Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Visualize in Weights & Biases

DeepSeek-R1-Distill-Qwen-1.5B-2-contract-sections-classification-v4-50

This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9474
  • Accuracy Evaluate: 0.7023
  • Precision Evaluate: 0.7283
  • Recall Evaluate: 0.7032
  • F1 Evaluate: 0.7003
  • Accuracy Sklearn: 0.7023
  • Precision Sklearn: 0.7252
  • Recall Sklearn: 0.7023
  • F1 Sklearn: 0.6989
  • Acuracia Rotulo Objeto: 0.8554
  • Acuracia Rotulo Obrigacoes: 0.7795
  • Acuracia Rotulo Valor: 0.6017
  • Acuracia Rotulo Vigencia: 0.5932
  • Acuracia Rotulo Rescisao: 0.6676
  • Acuracia Rotulo Foro: 0.9654
  • Acuracia Rotulo Reajuste: 0.4306
  • Acuracia Rotulo Fiscalizacao: 0.6435
  • Acuracia Rotulo Publicacao: 0.8177
  • Acuracia Rotulo Pagamento: 0.4457
  • Acuracia Rotulo Casos Omissos: 0.8276
  • Acuracia Rotulo Sancoes: 0.7339
  • Acuracia Rotulo Dotacao Orcamentaria: 0.7802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
3.9512 1.0 1000 3.6400 0.0653 0.1038 0.0796 0.0507 0.0653 0.1226 0.0653 0.0461 0.0021 0.0067 0.0143 0.1129 0.1219 0.3077 0.0036 0.0 0.0739 0.0072 0.0 0.0550 0.3297
3.3304 2.0 2000 3.1552 0.0877 0.1109 0.1027 0.0684 0.0877 0.1335 0.0877 0.0645 0.0145 0.0202 0.0659 0.1627 0.1219 0.3077 0.0036 0.0 0.4236 0.0072 0.0148 0.0550 0.1374
2.7872 3.0 3000 2.7514 0.1517 0.1497 0.1604 0.1408 0.1517 0.1648 0.1517 0.1429 0.0785 0.1414 0.2321 0.1680 0.1330 0.2923 0.0071 0.0946 0.5123 0.0181 0.2660 0.0642 0.0769
2.4261 4.0 4000 2.5576 0.2005 0.1879 0.1996 0.1902 0.2005 0.1960 0.2005 0.1943 0.2273 0.2677 0.2350 0.1890 0.0997 0.3192 0.0214 0.1104 0.4187 0.0181 0.5320 0.1009 0.0549
2.2045 5.0 5000 2.4390 0.2325 0.2250 0.2249 0.2204 0.2325 0.2313 0.2325 0.2267 0.3037 0.3367 0.2350 0.2310 0.1330 0.3231 0.0427 0.1104 0.4286 0.0254 0.5714 0.1284 0.0549
2.0064 6.0 6000 2.3316 0.2695 0.2628 0.2597 0.2554 0.2695 0.2714 0.2695 0.2637 0.4008 0.3468 0.2407 0.2336 0.1690 0.3577 0.2206 0.1167 0.4877 0.0507 0.5862 0.1376 0.0275
1.8509 7.0 7000 2.2336 0.2933 0.2896 0.2810 0.2782 0.2933 0.2989 0.2933 0.2876 0.4690 0.3586 0.2436 0.2598 0.1745 0.3962 0.2384 0.1451 0.4828 0.0797 0.6404 0.1376 0.0275
1.7072 8.0 8000 2.1432 0.321 0.3267 0.3075 0.3084 0.321 0.3354 0.321 0.3181 0.5186 0.3653 0.2493 0.2625 0.1911 0.4192 0.2847 0.2587 0.4926 0.1196 0.6650 0.1376 0.0330
1.6043 9.0 9000 2.0637 0.3443 0.3542 0.3288 0.3306 0.3443 0.3637 0.3443 0.3414 0.5702 0.3822 0.2521 0.2808 0.2022 0.4615 0.3132 0.3123 0.5172 0.1341 0.6601 0.1560 0.0330
1.4611 10.0 10000 1.9872 0.3822 0.3950 0.3639 0.3670 0.3822 0.4059 0.3822 0.3803 0.5971 0.4242 0.2751 0.3386 0.2133 0.5154 0.3203 0.4322 0.5369 0.1993 0.6601 0.1743 0.0440
1.3565 11.0 11000 1.9195 0.4037 0.4203 0.3862 0.3889 0.4037 0.4298 0.4037 0.4018 0.6116 0.4360 0.2951 0.3491 0.2188 0.5615 0.3310 0.5047 0.5567 0.2428 0.6601 0.1927 0.0604
1.2776 12.0 12000 1.8541 0.4235 0.4395 0.4056 0.4077 0.4235 0.4499 0.4235 0.4220 0.6281 0.4663 0.3209 0.3596 0.2410 0.5962 0.3416 0.5205 0.5665 0.2681 0.6601 0.2385 0.0659
1.2015 13.0 13000 1.7973 0.4415 0.4623 0.4297 0.4304 0.4415 0.4723 0.4415 0.4417 0.6384 0.4848 0.3524 0.3885 0.2604 0.6192 0.3452 0.4353 0.5714 0.2862 0.7931 0.3119 0.0989
1.0948 14.0 14000 1.7435 0.465 0.4844 0.4533 0.4516 0.465 0.4969 0.465 0.4648 0.6653 0.5253 0.3954 0.3963 0.2825 0.6731 0.3488 0.4479 0.5862 0.2645 0.7980 0.3670 0.1429
1.0335 15.0 15000 1.6933 0.4788 0.4981 0.4701 0.4663 0.4788 0.5114 0.4788 0.4789 0.6880 0.5269 0.4069 0.4042 0.2936 0.6923 0.3488 0.4511 0.5911 0.3007 0.8030 0.4128 0.1923
0.9816 16.0 16000 1.6456 0.4968 0.5181 0.4918 0.4848 0.4968 0.5318 0.4968 0.4966 0.7004 0.5455 0.4298 0.4094 0.3102 0.7115 0.3488 0.4511 0.7044 0.3043 0.8030 0.4495 0.2253
0.9221 17.0 17000 1.5969 0.5142 0.5474 0.5091 0.5038 0.5142 0.5601 0.5142 0.5150 0.7149 0.5875 0.4470 0.4173 0.3324 0.7538 0.3523 0.4637 0.7143 0.2717 0.7980 0.4954 0.2692
0.8315 18.0 18000 1.5564 0.5325 0.5665 0.5267 0.5212 0.5325 0.5794 0.5325 0.5332 0.7335 0.6145 0.4527 0.4199 0.4017 0.7692 0.3523 0.4763 0.7192 0.2681 0.7980 0.5229 0.3187
0.8019 19.0 19000 1.5088 0.551 0.5805 0.5418 0.5361 0.551 0.5949 0.551 0.5508 0.7335 0.6768 0.4728 0.4278 0.4266 0.7885 0.3523 0.4858 0.7291 0.2790 0.7980 0.5321 0.3407
0.7627 20.0 20000 1.4605 0.5627 0.5898 0.5555 0.5485 0.5627 0.6039 0.5627 0.5621 0.7355 0.6869 0.4814 0.4331 0.4460 0.8269 0.3523 0.4858 0.7389 0.2971 0.8030 0.5505 0.3846
0.6963 21.0 21000 1.4205 0.5835 0.6192 0.5789 0.5722 0.5835 0.6276 0.5835 0.5826 0.75 0.6953 0.4842 0.4357 0.4709 0.8654 0.3523 0.5804 0.7389 0.3261 0.8030 0.6055 0.4176
0.6698 22.0 22000 1.3759 0.5938 0.6262 0.5887 0.5825 0.5938 0.6348 0.5938 0.5931 0.7583 0.7020 0.4986 0.4436 0.5097 0.8692 0.3559 0.5741 0.7389 0.3442 0.8079 0.6055 0.4451
0.6175 23.0 23000 1.3362 0.601 0.6335 0.5976 0.5908 0.601 0.6412 0.601 0.6001 0.7665 0.7088 0.5043 0.4357 0.5263 0.8692 0.3594 0.5804 0.7438 0.3551 0.8079 0.6330 0.4780
0.5775 24.0 24000 1.3042 0.6102 0.6430 0.6066 0.5991 0.6102 0.6513 0.6102 0.6089 0.7810 0.7256 0.5129 0.4357 0.5485 0.8731 0.3594 0.5836 0.7438 0.3587 0.8079 0.6606 0.4945
0.5471 25.0 25000 1.2682 0.619 0.6507 0.6167 0.6089 0.619 0.6586 0.619 0.6177 0.7851 0.7340 0.5186 0.4436 0.5485 0.8769 0.3879 0.5868 0.7635 0.3768 0.8079 0.6881 0.5
0.5339 26.0 26000 1.2367 0.6262 0.6564 0.6243 0.6163 0.6262 0.6637 0.6262 0.6241 0.7996 0.7407 0.5272 0.4462 0.5540 0.8808 0.3879 0.5931 0.7635 0.3804 0.8128 0.6972 0.5330
0.4904 27.0 27000 1.2076 0.6352 0.6632 0.6339 0.6257 0.6352 0.6706 0.6352 0.6329 0.8079 0.7508 0.5301 0.4541 0.5706 0.8846 0.3950 0.5962 0.7783 0.3804 0.8128 0.6972 0.5824
0.4679 28.0 28000 1.1778 0.6405 0.6669 0.6392 0.6313 0.6405 0.6741 0.6405 0.6382 0.8058 0.7525 0.5301 0.4672 0.5762 0.8846 0.4021 0.6088 0.7833 0.4022 0.8177 0.6972 0.5824
0.4567 29.0 29000 1.1544 0.6468 0.6700 0.6461 0.6373 0.6468 0.6772 0.6468 0.6440 0.8140 0.7593 0.5330 0.4698 0.5900 0.8885 0.4057 0.6088 0.7833 0.4022 0.8177 0.7064 0.6209
0.4424 30.0 30000 1.1306 0.652 0.6728 0.6513 0.6422 0.652 0.6806 0.652 0.6490 0.8202 0.7643 0.5330 0.4777 0.5983 0.8962 0.4057 0.6120 0.7833 0.4094 0.8177 0.7064 0.6429
0.409 31.0 31000 1.1112 0.657 0.6785 0.6577 0.6486 0.657 0.6857 0.657 0.6543 0.8244 0.7559 0.5415 0.4751 0.6066 0.9115 0.4093 0.6278 0.7833 0.4203 0.8227 0.7064 0.6648
0.4016 32.0 32000 1.0915 0.664 0.6861 0.6644 0.6564 0.664 0.6922 0.664 0.6614 0.8326 0.7626 0.5559 0.4856 0.6122 0.9115 0.4128 0.6278 0.7833 0.4312 0.8227 0.7064 0.6923
0.3937 33.0 33000 1.0746 0.6685 0.6937 0.6695 0.6620 0.6685 0.6979 0.6685 0.6658 0.8306 0.7694 0.5702 0.4856 0.6122 0.9423 0.4128 0.6246 0.7833 0.4312 0.8227 0.7156 0.7033
0.3765 34.0 34000 1.0577 0.6727 0.6971 0.6744 0.6670 0.6727 0.7010 0.6727 0.6700 0.8388 0.7660 0.5759 0.4934 0.6150 0.9462 0.4164 0.6246 0.7931 0.4348 0.8227 0.7156 0.7253
0.3727 35.0 35000 1.0426 0.6785 0.7022 0.6800 0.6729 0.6785 0.7055 0.6785 0.6756 0.8409 0.7677 0.5903 0.5171 0.6150 0.9538 0.4164 0.6309 0.7931 0.4348 0.8227 0.7156 0.7418
0.3593 36.0 36000 1.0304 0.6803 0.7041 0.6810 0.6743 0.6803 0.7072 0.6803 0.6773 0.8430 0.7694 0.5903 0.5249 0.6177 0.9577 0.4199 0.6309 0.7931 0.4348 0.8227 0.7064 0.7418
0.3532 37.0 37000 1.0170 0.6827 0.7052 0.6838 0.6774 0.6827 0.7075 0.6827 0.6795 0.8450 0.7694 0.5903 0.5276 0.6260 0.9615 0.4199 0.6309 0.7980 0.4384 0.8227 0.7064 0.7527
0.3486 38.0 38000 1.0061 0.685 0.7071 0.6857 0.6801 0.685 0.7082 0.685 0.6814 0.8450 0.7727 0.5931 0.5354 0.6316 0.9615 0.4199 0.6309 0.7980 0.4384 0.8227 0.7064 0.7582
0.3383 39.0 39000 0.9962 0.6863 0.7083 0.6869 0.6812 0.6863 0.7099 0.6863 0.6829 0.8471 0.7710 0.5931 0.5354 0.6399 0.9615 0.4235 0.6309 0.7980 0.4420 0.8227 0.7064 0.7582
0.3375 40.0 40000 0.9883 0.6885 0.7114 0.6887 0.6837 0.6885 0.7123 0.6885 0.6851 0.8512 0.7727 0.5931 0.5381 0.6482 0.9615 0.4235 0.6341 0.7980 0.4457 0.8227 0.7064 0.7582
0.3105 41.0 41000 0.9787 0.692 0.7138 0.6925 0.6875 0.692 0.7143 0.692 0.6885 0.8492 0.7744 0.5931 0.5538 0.6565 0.9615 0.4235 0.6372 0.7980 0.4457 0.8227 0.7064 0.7802
0.3194 42.0 42000 0.9722 0.6953 0.7173 0.6957 0.6910 0.6953 0.7178 0.6953 0.6919 0.8512 0.7761 0.5989 0.5669 0.6565 0.9615 0.4306 0.6404 0.7980 0.4457 0.8227 0.7156 0.7802
0.3241 43.0 43000 0.9658 0.6987 0.7218 0.6987 0.6950 0.6987 0.7210 0.6987 0.6953 0.8533 0.7811 0.6017 0.5774 0.6620 0.9615 0.4306 0.6435 0.8030 0.4457 0.8276 0.7156 0.7802
0.3078 44.0 44000 0.9608 0.6993 0.7227 0.6992 0.6957 0.6993 0.7214 0.6993 0.6958 0.8533 0.7811 0.6017 0.5801 0.6620 0.9654 0.4306 0.6435 0.8030 0.4457 0.8276 0.7156 0.7802
0.3084 45.0 45000 0.9572 0.6997 0.7234 0.7002 0.6964 0.6997 0.7222 0.6997 0.6964 0.8512 0.7811 0.6017 0.5853 0.6620 0.9654 0.4306 0.6435 0.8030 0.4457 0.8276 0.7248 0.7802
0.3223 46.0 46000 0.9536 0.702 0.7275 0.7031 0.6997 0.702 0.7249 0.702 0.6987 0.8533 0.7811 0.6017 0.5853 0.6648 0.9654 0.4306 0.6530 0.8177 0.4457 0.8276 0.7339 0.7802
0.2982 47.0 47000 0.9505 0.7017 0.7279 0.7028 0.6997 0.7017 0.7250 0.7017 0.6984 0.8554 0.7795 0.6017 0.5906 0.6648 0.9654 0.4306 0.6435 0.8177 0.4457 0.8276 0.7339 0.7802
0.3047 48.0 48000 0.9490 0.7017 0.7278 0.7029 0.6998 0.7017 0.7249 0.7017 0.6985 0.8533 0.7795 0.6017 0.5906 0.6676 0.9654 0.4306 0.6435 0.8177 0.4457 0.8276 0.7339 0.7802
0.3013 49.0 49000 0.9477 0.7027 0.7284 0.7038 0.7007 0.7027 0.7255 0.7027 0.6994 0.8554 0.7795 0.6017 0.5906 0.6676 0.9654 0.4306 0.6530 0.8177 0.4457 0.8276 0.7339 0.7802
0.3005 50.0 50000 0.9474 0.7023 0.7283 0.7032 0.7003 0.7023 0.7252 0.7023 0.6989 0.8554 0.7795 0.6017 0.5932 0.6676 0.9654 0.4306 0.6435 0.8177 0.4457 0.8276 0.7339 0.7802

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for marcelovidigal/DeepSeek-R1-Distill-Qwen-1.5B-2-contract-sections-classification-v4-50

Adapter
(26)
this model