albert-base-v2-2-contract-sections-classification-v4-50
This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5314
- Accuracy Evaluate: 0.9097
- Precision Evaluate: 0.9151
- Recall Evaluate: 0.9117
- F1 Evaluate: 0.9116
- Accuracy Sklearn: 0.9097
- Precision Sklearn: 0.9128
- Recall Sklearn: 0.9097
- F1 Sklearn: 0.9098
- Acuracia Rotulo Objeto: 0.8864
- Acuracia Rotulo Obrigacoes: 0.9209
- Acuracia Rotulo Valor: 0.9083
- Acuracia Rotulo Vigencia: 0.9711
- Acuracia Rotulo Rescisao: 0.9058
- Acuracia Rotulo Foro: 0.9692
- Acuracia Rotulo Reajuste: 0.8541
- Acuracia Rotulo Fiscalizacao: 0.8170
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.8732
- Acuracia Rotulo Casos Omissos: 0.8768
- Acuracia Rotulo Sancoes: 0.8807
- Acuracia Rotulo Dotacao Orcamentaria: 0.9890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.7552 | 1.0 | 1000 | 1.9079 | 0.496 | 0.6020 | 0.4649 | 0.4675 | 0.496 | 0.5822 | 0.496 | 0.4775 | 0.8264 | 0.8283 | 0.2149 | 0.4121 | 0.2632 | 0.5231 | 0.2633 | 0.3817 | 0.6749 | 0.2681 | 0.7586 | 0.6239 | 0.0055 |
1.1842 | 2.0 | 2000 | 1.5372 | 0.622 | 0.7106 | 0.5977 | 0.6107 | 0.622 | 0.6829 | 0.622 | 0.6108 | 0.8781 | 0.8704 | 0.2321 | 0.5092 | 0.6122 | 0.8962 | 0.3381 | 0.5394 | 0.7389 | 0.4493 | 0.7931 | 0.6881 | 0.2253 |
0.813 | 3.0 | 3000 | 1.2294 | 0.6975 | 0.7280 | 0.6856 | 0.6952 | 0.6975 | 0.7176 | 0.6975 | 0.6951 | 0.8657 | 0.8653 | 0.3668 | 0.5433 | 0.6260 | 0.9231 | 0.6548 | 0.5868 | 0.8128 | 0.6920 | 0.7931 | 0.6330 | 0.5495 |
0.5719 | 4.0 | 4000 | 1.0358 | 0.743 | 0.7902 | 0.7325 | 0.7510 | 0.743 | 0.7686 | 0.743 | 0.7440 | 0.9091 | 0.8788 | 0.5072 | 0.5564 | 0.7258 | 0.9115 | 0.6904 | 0.7161 | 0.7783 | 0.6268 | 0.8128 | 0.7064 | 0.7033 |
0.4072 | 5.0 | 5000 | 0.8484 | 0.797 | 0.8183 | 0.7912 | 0.7998 | 0.797 | 0.8073 | 0.797 | 0.7962 | 0.9174 | 0.8771 | 0.6963 | 0.5696 | 0.8144 | 0.9231 | 0.8149 | 0.7287 | 0.8719 | 0.7029 | 0.8128 | 0.6881 | 0.8681 |
0.2805 | 6.0 | 6000 | 0.7369 | 0.8153 | 0.8329 | 0.8113 | 0.8194 | 0.8153 | 0.8216 | 0.8153 | 0.8154 | 0.8905 | 0.8855 | 0.7994 | 0.6220 | 0.7784 | 0.9192 | 0.8185 | 0.7760 | 0.8522 | 0.7681 | 0.8079 | 0.7339 | 0.8956 |
0.2155 | 7.0 | 7000 | 0.6316 | 0.846 | 0.8552 | 0.8436 | 0.8468 | 0.846 | 0.8510 | 0.846 | 0.8459 | 0.9174 | 0.9024 | 0.8481 | 0.6982 | 0.8199 | 0.9269 | 0.8292 | 0.8013 | 0.9557 | 0.7645 | 0.7734 | 0.8073 | 0.9231 |
0.1517 | 8.0 | 8000 | 0.5717 | 0.8548 | 0.8599 | 0.8557 | 0.8558 | 0.8548 | 0.8593 | 0.8548 | 0.8551 | 0.8988 | 0.8939 | 0.8453 | 0.7664 | 0.8283 | 0.9231 | 0.8327 | 0.8202 | 0.9507 | 0.7572 | 0.8276 | 0.8349 | 0.9451 |
0.1117 | 9.0 | 9000 | 0.5221 | 0.8682 | 0.8719 | 0.8682 | 0.8683 | 0.8682 | 0.8718 | 0.8682 | 0.8685 | 0.8884 | 0.9074 | 0.8625 | 0.8451 | 0.8227 | 0.9346 | 0.8185 | 0.8391 | 0.9754 | 0.7935 | 0.8227 | 0.8532 | 0.9231 |
0.0909 | 10.0 | 10000 | 0.4948 | 0.8782 | 0.8785 | 0.8752 | 0.8751 | 0.8782 | 0.8820 | 0.8782 | 0.8787 | 0.9153 | 0.9108 | 0.8797 | 0.8635 | 0.8366 | 0.9269 | 0.8256 | 0.8517 | 0.9754 | 0.8225 | 0.8079 | 0.8440 | 0.9176 |
0.0766 | 11.0 | 11000 | 0.4817 | 0.8798 | 0.8840 | 0.8776 | 0.8783 | 0.8798 | 0.8854 | 0.8798 | 0.8802 | 0.9215 | 0.9209 | 0.8567 | 0.8793 | 0.8449 | 0.9346 | 0.8256 | 0.7950 | 0.9852 | 0.8152 | 0.8276 | 0.8349 | 0.9670 |
0.0545 | 12.0 | 12000 | 0.4598 | 0.8872 | 0.8912 | 0.8857 | 0.8870 | 0.8872 | 0.8905 | 0.8872 | 0.8874 | 0.8905 | 0.9394 | 0.8768 | 0.8766 | 0.8560 | 0.9346 | 0.8292 | 0.8517 | 0.9901 | 0.8225 | 0.8325 | 0.8532 | 0.9615 |
0.0506 | 13.0 | 13000 | 0.4764 | 0.8882 | 0.8971 | 0.8862 | 0.8891 | 0.8882 | 0.8939 | 0.8882 | 0.8889 | 0.9029 | 0.9360 | 0.9054 | 0.8583 | 0.8476 | 0.9308 | 0.8399 | 0.8644 | 0.9803 | 0.8188 | 0.8128 | 0.8624 | 0.9615 |
0.039 | 14.0 | 14000 | 0.4569 | 0.8942 | 0.8982 | 0.8928 | 0.8930 | 0.8942 | 0.8989 | 0.8942 | 0.8946 | 0.9091 | 0.9276 | 0.8940 | 0.9239 | 0.8643 | 0.9346 | 0.8363 | 0.8170 | 0.9803 | 0.8514 | 0.8177 | 0.8716 | 0.9780 |
0.0337 | 15.0 | 15000 | 0.4747 | 0.891 | 0.8953 | 0.8901 | 0.8900 | 0.891 | 0.8971 | 0.891 | 0.8918 | 0.9215 | 0.9175 | 0.8825 | 0.9029 | 0.8504 | 0.9385 | 0.8363 | 0.8328 | 0.9803 | 0.8297 | 0.8424 | 0.8532 | 0.9835 |
0.0317 | 16.0 | 16000 | 0.4436 | 0.898 | 0.9022 | 0.8947 | 0.8966 | 0.898 | 0.9013 | 0.898 | 0.8981 | 0.9050 | 0.9276 | 0.9054 | 0.9423 | 0.8947 | 0.9346 | 0.8363 | 0.8202 | 0.9852 | 0.8442 | 0.8177 | 0.8624 | 0.9560 |
0.0322 | 17.0 | 17000 | 0.4583 | 0.903 | 0.9096 | 0.9017 | 0.9039 | 0.903 | 0.9062 | 0.903 | 0.9031 | 0.8884 | 0.9276 | 0.9198 | 0.9685 | 0.8837 | 0.9346 | 0.8541 | 0.8423 | 0.9901 | 0.8225 | 0.8571 | 0.8716 | 0.9615 |
0.0247 | 18.0 | 18000 | 0.4442 | 0.9018 | 0.9053 | 0.9012 | 0.9013 | 0.9018 | 0.9052 | 0.9018 | 0.9020 | 0.8988 | 0.9242 | 0.8997 | 0.9449 | 0.8892 | 0.9385 | 0.8505 | 0.8360 | 0.9852 | 0.8551 | 0.8325 | 0.8716 | 0.9890 |
0.0237 | 19.0 | 19000 | 0.4582 | 0.9058 | 0.9115 | 0.9053 | 0.9071 | 0.9058 | 0.9081 | 0.9058 | 0.9058 | 0.8884 | 0.9310 | 0.9169 | 0.9475 | 0.8975 | 0.9385 | 0.8577 | 0.8328 | 0.9901 | 0.8623 | 0.8571 | 0.8716 | 0.9780 |
0.0194 | 20.0 | 20000 | 0.4580 | 0.906 | 0.9115 | 0.9042 | 0.9065 | 0.906 | 0.9083 | 0.906 | 0.9060 | 0.8905 | 0.9343 | 0.9226 | 0.9528 | 0.8892 | 0.95 | 0.8541 | 0.8391 | 0.9901 | 0.8514 | 0.8621 | 0.8624 | 0.9560 |
0.0159 | 21.0 | 21000 | 0.4595 | 0.907 | 0.9142 | 0.9075 | 0.9093 | 0.907 | 0.9100 | 0.907 | 0.9072 | 0.9050 | 0.9209 | 0.9140 | 0.9475 | 0.8975 | 0.95 | 0.8470 | 0.8423 | 0.9901 | 0.8514 | 0.8670 | 0.8807 | 0.9835 |
0.0141 | 22.0 | 22000 | 0.4668 | 0.9048 | 0.9122 | 0.9045 | 0.9068 | 0.9048 | 0.9073 | 0.9048 | 0.9047 | 0.9050 | 0.9259 | 0.9169 | 0.9501 | 0.9058 | 0.9385 | 0.8470 | 0.8233 | 0.9901 | 0.8370 | 0.8473 | 0.8991 | 0.9725 |
0.0109 | 23.0 | 23000 | 0.4506 | 0.9097 | 0.9159 | 0.9088 | 0.9110 | 0.9097 | 0.9120 | 0.9097 | 0.9097 | 0.9008 | 0.9276 | 0.9112 | 0.9790 | 0.8975 | 0.95 | 0.8577 | 0.8360 | 0.9507 | 0.8623 | 0.8768 | 0.8807 | 0.9835 |
0.011 | 24.0 | 24000 | 0.4544 | 0.9095 | 0.9116 | 0.9090 | 0.9084 | 0.9095 | 0.9125 | 0.9095 | 0.9096 | 0.9070 | 0.9192 | 0.9226 | 0.9711 | 0.8920 | 0.9577 | 0.8505 | 0.8360 | 0.9951 | 0.8623 | 0.8424 | 0.8716 | 0.9890 |
0.0093 | 25.0 | 25000 | 0.4787 | 0.9117 | 0.9171 | 0.9120 | 0.9129 | 0.9117 | 0.9147 | 0.9117 | 0.9119 | 0.9050 | 0.9343 | 0.9169 | 0.9580 | 0.9030 | 0.95 | 0.8577 | 0.8233 | 0.9901 | 0.8623 | 0.8818 | 0.8899 | 0.9835 |
0.0098 | 26.0 | 26000 | 0.4674 | 0.9093 | 0.9156 | 0.9093 | 0.9109 | 0.9093 | 0.9119 | 0.9093 | 0.9092 | 0.8967 | 0.9276 | 0.9255 | 0.9659 | 0.8892 | 0.9615 | 0.8577 | 0.8139 | 0.9951 | 0.8768 | 0.8473 | 0.8807 | 0.9835 |
0.0084 | 27.0 | 27000 | 0.4786 | 0.912 | 0.9190 | 0.9125 | 0.9136 | 0.912 | 0.9166 | 0.912 | 0.9123 | 0.9029 | 0.9343 | 0.9370 | 0.9606 | 0.8864 | 0.9615 | 0.8577 | 0.8233 | 0.9951 | 0.8478 | 0.8768 | 0.8899 | 0.9890 |
0.009 | 28.0 | 28000 | 0.4959 | 0.9107 | 0.9183 | 0.9103 | 0.9123 | 0.9107 | 0.9145 | 0.9107 | 0.9109 | 0.9132 | 0.9377 | 0.9198 | 0.9554 | 0.8892 | 0.95 | 0.8577 | 0.8202 | 0.9901 | 0.8551 | 0.8670 | 0.8899 | 0.9890 |
0.0068 | 29.0 | 29000 | 0.4824 | 0.9135 | 0.9199 | 0.9146 | 0.9153 | 0.9135 | 0.9172 | 0.9135 | 0.9136 | 0.8905 | 0.9310 | 0.9341 | 0.9738 | 0.8975 | 0.9692 | 0.8577 | 0.8044 | 0.9951 | 0.8804 | 0.8867 | 0.8807 | 0.9890 |
0.0085 | 30.0 | 30000 | 0.4846 | 0.9103 | 0.9230 | 0.9091 | 0.9140 | 0.9103 | 0.9147 | 0.9103 | 0.9105 | 0.9008 | 0.9327 | 0.9198 | 0.9790 | 0.8975 | 0.9577 | 0.8541 | 0.8170 | 0.9901 | 0.8587 | 0.8571 | 0.8807 | 0.9725 |
0.0057 | 31.0 | 31000 | 0.4978 | 0.9107 | 0.9132 | 0.9131 | 0.9110 | 0.9107 | 0.9142 | 0.9107 | 0.9108 | 0.8905 | 0.9293 | 0.9140 | 0.9633 | 0.8975 | 0.9692 | 0.8648 | 0.8139 | 1.0 | 0.8623 | 0.8768 | 0.8991 | 0.9890 |
0.0036 | 32.0 | 32000 | 0.5003 | 0.9077 | 0.9181 | 0.9090 | 0.9117 | 0.9077 | 0.9112 | 0.9077 | 0.9078 | 0.8864 | 0.9377 | 0.8968 | 0.9659 | 0.8947 | 0.9692 | 0.8541 | 0.8076 | 1.0 | 0.8587 | 0.8719 | 0.8899 | 0.9835 |
0.006 | 33.0 | 33000 | 0.5001 | 0.9087 | 0.9136 | 0.9095 | 0.9096 | 0.9087 | 0.9119 | 0.9087 | 0.9088 | 0.8967 | 0.9276 | 0.9198 | 0.9633 | 0.8975 | 0.9577 | 0.8612 | 0.8076 | 1.0 | 0.8623 | 0.8621 | 0.8899 | 0.9780 |
0.005 | 34.0 | 34000 | 0.4861 | 0.9117 | 0.9169 | 0.9131 | 0.9132 | 0.9117 | 0.9150 | 0.9117 | 0.9119 | 0.9008 | 0.9293 | 0.8968 | 0.9659 | 0.9058 | 0.9615 | 0.8505 | 0.8202 | 1.0 | 0.8841 | 0.8768 | 0.8899 | 0.9890 |
0.0046 | 35.0 | 35000 | 0.4997 | 0.9093 | 0.9145 | 0.9113 | 0.9111 | 0.9093 | 0.9122 | 0.9093 | 0.9092 | 0.8802 | 0.9259 | 0.9169 | 0.9633 | 0.9058 | 0.9654 | 0.8577 | 0.8013 | 1.0 | 0.8841 | 0.8768 | 0.8807 | 0.9890 |
0.0021 | 36.0 | 36000 | 0.5209 | 0.9087 | 0.9151 | 0.9101 | 0.9100 | 0.9087 | 0.9135 | 0.9087 | 0.9090 | 0.8926 | 0.9327 | 0.9226 | 0.9580 | 0.9030 | 0.9577 | 0.8505 | 0.8107 | 1.0 | 0.8333 | 0.8916 | 0.8899 | 0.9890 |
0.0029 | 37.0 | 37000 | 0.4948 | 0.9083 | 0.9120 | 0.9105 | 0.9096 | 0.9083 | 0.9109 | 0.9083 | 0.9082 | 0.8719 | 0.9310 | 0.9198 | 0.9396 | 0.9114 | 0.9692 | 0.8577 | 0.8139 | 1.0 | 0.8913 | 0.8571 | 0.8899 | 0.9835 |
0.0038 | 38.0 | 38000 | 0.5256 | 0.909 | 0.9160 | 0.9106 | 0.9114 | 0.909 | 0.9125 | 0.909 | 0.9091 | 0.9070 | 0.9209 | 0.8911 | 0.9738 | 0.9030 | 0.9577 | 0.8541 | 0.8139 | 1.0 | 0.8551 | 0.8768 | 0.8899 | 0.9945 |
0.0019 | 39.0 | 39000 | 0.5229 | 0.9087 | 0.9188 | 0.9105 | 0.9127 | 0.9087 | 0.9128 | 0.9087 | 0.9090 | 0.8864 | 0.9242 | 0.9198 | 0.9685 | 0.9058 | 0.9577 | 0.8541 | 0.8107 | 1.0 | 0.8587 | 0.8768 | 0.8899 | 0.9835 |
0.0028 | 40.0 | 40000 | 0.5419 | 0.9097 | 0.9194 | 0.9101 | 0.9123 | 0.9097 | 0.9145 | 0.9097 | 0.9099 | 0.8967 | 0.9377 | 0.9169 | 0.9738 | 0.8975 | 0.95 | 0.8541 | 0.8044 | 1.0 | 0.8442 | 0.8768 | 0.8899 | 0.9890 |
0.0015 | 41.0 | 41000 | 0.5141 | 0.91 | 0.9114 | 0.9133 | 0.9102 | 0.91 | 0.9133 | 0.91 | 0.9101 | 0.8884 | 0.9158 | 0.9054 | 0.9685 | 0.9086 | 0.9654 | 0.8612 | 0.8013 | 1.0 | 0.8877 | 0.8867 | 0.8899 | 0.9945 |
0.0024 | 42.0 | 42000 | 0.5203 | 0.9115 | 0.9163 | 0.9135 | 0.9132 | 0.9115 | 0.9142 | 0.9115 | 0.9115 | 0.9029 | 0.9226 | 0.8968 | 0.9633 | 0.9114 | 0.9654 | 0.8612 | 0.8139 | 1.0 | 0.8768 | 0.8768 | 0.8899 | 0.9945 |
0.0016 | 43.0 | 43000 | 0.5236 | 0.9123 | 0.9148 | 0.9159 | 0.9134 | 0.9123 | 0.9153 | 0.9123 | 0.9123 | 0.8781 | 0.9226 | 0.9054 | 0.9633 | 0.9086 | 1.0 | 0.8648 | 0.8107 | 1.0 | 0.8877 | 0.8867 | 0.8899 | 0.9890 |
0.0015 | 44.0 | 44000 | 0.5263 | 0.9093 | 0.9137 | 0.9118 | 0.9110 | 0.9093 | 0.9119 | 0.9093 | 0.9092 | 0.8884 | 0.9158 | 0.9026 | 0.9711 | 0.9058 | 0.9692 | 0.8541 | 0.8170 | 1.0 | 0.8768 | 0.8768 | 0.8807 | 0.9945 |
0.0026 | 45.0 | 45000 | 0.5248 | 0.9107 | 0.9180 | 0.9120 | 0.9134 | 0.9107 | 0.9136 | 0.9107 | 0.9108 | 0.9008 | 0.9209 | 0.9169 | 0.9711 | 0.9058 | 0.9615 | 0.8541 | 0.8107 | 1.0 | 0.8623 | 0.8768 | 0.8807 | 0.9945 |
0.0002 | 46.0 | 46000 | 0.5317 | 0.91 | 0.9144 | 0.9120 | 0.9113 | 0.91 | 0.9130 | 0.91 | 0.9100 | 0.8905 | 0.9226 | 0.9026 | 0.9711 | 0.9003 | 0.9692 | 0.8541 | 0.8170 | 1.0 | 0.8768 | 0.8768 | 0.8807 | 0.9945 |
0.0017 | 47.0 | 47000 | 0.5278 | 0.9117 | 0.9182 | 0.9140 | 0.9147 | 0.9117 | 0.9144 | 0.9117 | 0.9118 | 0.8843 | 0.9209 | 0.9169 | 0.9685 | 0.9086 | 0.9654 | 0.8648 | 0.8170 | 1.0 | 0.8841 | 0.8818 | 0.8807 | 0.9890 |
0.0022 | 48.0 | 48000 | 0.5294 | 0.9093 | 0.9135 | 0.9114 | 0.9104 | 0.9093 | 0.9127 | 0.9093 | 0.9093 | 0.8802 | 0.9226 | 0.9112 | 0.9711 | 0.9030 | 0.9692 | 0.8505 | 0.8170 | 1.0 | 0.8768 | 0.8768 | 0.8807 | 0.9890 |
0.0013 | 49.0 | 49000 | 0.5299 | 0.9097 | 0.9148 | 0.9117 | 0.9115 | 0.9097 | 0.9128 | 0.9097 | 0.9098 | 0.8864 | 0.9209 | 0.9083 | 0.9711 | 0.9058 | 0.9692 | 0.8541 | 0.8170 | 1.0 | 0.8732 | 0.8768 | 0.8807 | 0.9890 |
0.0012 | 50.0 | 50000 | 0.5314 | 0.9097 | 0.9151 | 0.9117 | 0.9116 | 0.9097 | 0.9128 | 0.9097 | 0.9098 | 0.8864 | 0.9209 | 0.9083 | 0.9711 | 0.9058 | 0.9692 | 0.8541 | 0.8170 | 1.0 | 0.8732 | 0.8768 | 0.8807 | 0.9890 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for marcelovidigal/albert-base-v2-2-contract-sections-classification-v4-50
Base model
albert/albert-base-v2