Visualize in Weights & Biases Visualize in Weights & Biases

albert-base-v2-2-contract-sections-classification-v4-50

This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5314
  • Accuracy Evaluate: 0.9097
  • Precision Evaluate: 0.9151
  • Recall Evaluate: 0.9117
  • F1 Evaluate: 0.9116
  • Accuracy Sklearn: 0.9097
  • Precision Sklearn: 0.9128
  • Recall Sklearn: 0.9097
  • F1 Sklearn: 0.9098
  • Acuracia Rotulo Objeto: 0.8864
  • Acuracia Rotulo Obrigacoes: 0.9209
  • Acuracia Rotulo Valor: 0.9083
  • Acuracia Rotulo Vigencia: 0.9711
  • Acuracia Rotulo Rescisao: 0.9058
  • Acuracia Rotulo Foro: 0.9692
  • Acuracia Rotulo Reajuste: 0.8541
  • Acuracia Rotulo Fiscalizacao: 0.8170
  • Acuracia Rotulo Publicacao: 1.0
  • Acuracia Rotulo Pagamento: 0.8732
  • Acuracia Rotulo Casos Omissos: 0.8768
  • Acuracia Rotulo Sancoes: 0.8807
  • Acuracia Rotulo Dotacao Orcamentaria: 0.9890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
1.7552 1.0 1000 1.9079 0.496 0.6020 0.4649 0.4675 0.496 0.5822 0.496 0.4775 0.8264 0.8283 0.2149 0.4121 0.2632 0.5231 0.2633 0.3817 0.6749 0.2681 0.7586 0.6239 0.0055
1.1842 2.0 2000 1.5372 0.622 0.7106 0.5977 0.6107 0.622 0.6829 0.622 0.6108 0.8781 0.8704 0.2321 0.5092 0.6122 0.8962 0.3381 0.5394 0.7389 0.4493 0.7931 0.6881 0.2253
0.813 3.0 3000 1.2294 0.6975 0.7280 0.6856 0.6952 0.6975 0.7176 0.6975 0.6951 0.8657 0.8653 0.3668 0.5433 0.6260 0.9231 0.6548 0.5868 0.8128 0.6920 0.7931 0.6330 0.5495
0.5719 4.0 4000 1.0358 0.743 0.7902 0.7325 0.7510 0.743 0.7686 0.743 0.7440 0.9091 0.8788 0.5072 0.5564 0.7258 0.9115 0.6904 0.7161 0.7783 0.6268 0.8128 0.7064 0.7033
0.4072 5.0 5000 0.8484 0.797 0.8183 0.7912 0.7998 0.797 0.8073 0.797 0.7962 0.9174 0.8771 0.6963 0.5696 0.8144 0.9231 0.8149 0.7287 0.8719 0.7029 0.8128 0.6881 0.8681
0.2805 6.0 6000 0.7369 0.8153 0.8329 0.8113 0.8194 0.8153 0.8216 0.8153 0.8154 0.8905 0.8855 0.7994 0.6220 0.7784 0.9192 0.8185 0.7760 0.8522 0.7681 0.8079 0.7339 0.8956
0.2155 7.0 7000 0.6316 0.846 0.8552 0.8436 0.8468 0.846 0.8510 0.846 0.8459 0.9174 0.9024 0.8481 0.6982 0.8199 0.9269 0.8292 0.8013 0.9557 0.7645 0.7734 0.8073 0.9231
0.1517 8.0 8000 0.5717 0.8548 0.8599 0.8557 0.8558 0.8548 0.8593 0.8548 0.8551 0.8988 0.8939 0.8453 0.7664 0.8283 0.9231 0.8327 0.8202 0.9507 0.7572 0.8276 0.8349 0.9451
0.1117 9.0 9000 0.5221 0.8682 0.8719 0.8682 0.8683 0.8682 0.8718 0.8682 0.8685 0.8884 0.9074 0.8625 0.8451 0.8227 0.9346 0.8185 0.8391 0.9754 0.7935 0.8227 0.8532 0.9231
0.0909 10.0 10000 0.4948 0.8782 0.8785 0.8752 0.8751 0.8782 0.8820 0.8782 0.8787 0.9153 0.9108 0.8797 0.8635 0.8366 0.9269 0.8256 0.8517 0.9754 0.8225 0.8079 0.8440 0.9176
0.0766 11.0 11000 0.4817 0.8798 0.8840 0.8776 0.8783 0.8798 0.8854 0.8798 0.8802 0.9215 0.9209 0.8567 0.8793 0.8449 0.9346 0.8256 0.7950 0.9852 0.8152 0.8276 0.8349 0.9670
0.0545 12.0 12000 0.4598 0.8872 0.8912 0.8857 0.8870 0.8872 0.8905 0.8872 0.8874 0.8905 0.9394 0.8768 0.8766 0.8560 0.9346 0.8292 0.8517 0.9901 0.8225 0.8325 0.8532 0.9615
0.0506 13.0 13000 0.4764 0.8882 0.8971 0.8862 0.8891 0.8882 0.8939 0.8882 0.8889 0.9029 0.9360 0.9054 0.8583 0.8476 0.9308 0.8399 0.8644 0.9803 0.8188 0.8128 0.8624 0.9615
0.039 14.0 14000 0.4569 0.8942 0.8982 0.8928 0.8930 0.8942 0.8989 0.8942 0.8946 0.9091 0.9276 0.8940 0.9239 0.8643 0.9346 0.8363 0.8170 0.9803 0.8514 0.8177 0.8716 0.9780
0.0337 15.0 15000 0.4747 0.891 0.8953 0.8901 0.8900 0.891 0.8971 0.891 0.8918 0.9215 0.9175 0.8825 0.9029 0.8504 0.9385 0.8363 0.8328 0.9803 0.8297 0.8424 0.8532 0.9835
0.0317 16.0 16000 0.4436 0.898 0.9022 0.8947 0.8966 0.898 0.9013 0.898 0.8981 0.9050 0.9276 0.9054 0.9423 0.8947 0.9346 0.8363 0.8202 0.9852 0.8442 0.8177 0.8624 0.9560
0.0322 17.0 17000 0.4583 0.903 0.9096 0.9017 0.9039 0.903 0.9062 0.903 0.9031 0.8884 0.9276 0.9198 0.9685 0.8837 0.9346 0.8541 0.8423 0.9901 0.8225 0.8571 0.8716 0.9615
0.0247 18.0 18000 0.4442 0.9018 0.9053 0.9012 0.9013 0.9018 0.9052 0.9018 0.9020 0.8988 0.9242 0.8997 0.9449 0.8892 0.9385 0.8505 0.8360 0.9852 0.8551 0.8325 0.8716 0.9890
0.0237 19.0 19000 0.4582 0.9058 0.9115 0.9053 0.9071 0.9058 0.9081 0.9058 0.9058 0.8884 0.9310 0.9169 0.9475 0.8975 0.9385 0.8577 0.8328 0.9901 0.8623 0.8571 0.8716 0.9780
0.0194 20.0 20000 0.4580 0.906 0.9115 0.9042 0.9065 0.906 0.9083 0.906 0.9060 0.8905 0.9343 0.9226 0.9528 0.8892 0.95 0.8541 0.8391 0.9901 0.8514 0.8621 0.8624 0.9560
0.0159 21.0 21000 0.4595 0.907 0.9142 0.9075 0.9093 0.907 0.9100 0.907 0.9072 0.9050 0.9209 0.9140 0.9475 0.8975 0.95 0.8470 0.8423 0.9901 0.8514 0.8670 0.8807 0.9835
0.0141 22.0 22000 0.4668 0.9048 0.9122 0.9045 0.9068 0.9048 0.9073 0.9048 0.9047 0.9050 0.9259 0.9169 0.9501 0.9058 0.9385 0.8470 0.8233 0.9901 0.8370 0.8473 0.8991 0.9725
0.0109 23.0 23000 0.4506 0.9097 0.9159 0.9088 0.9110 0.9097 0.9120 0.9097 0.9097 0.9008 0.9276 0.9112 0.9790 0.8975 0.95 0.8577 0.8360 0.9507 0.8623 0.8768 0.8807 0.9835
0.011 24.0 24000 0.4544 0.9095 0.9116 0.9090 0.9084 0.9095 0.9125 0.9095 0.9096 0.9070 0.9192 0.9226 0.9711 0.8920 0.9577 0.8505 0.8360 0.9951 0.8623 0.8424 0.8716 0.9890
0.0093 25.0 25000 0.4787 0.9117 0.9171 0.9120 0.9129 0.9117 0.9147 0.9117 0.9119 0.9050 0.9343 0.9169 0.9580 0.9030 0.95 0.8577 0.8233 0.9901 0.8623 0.8818 0.8899 0.9835
0.0098 26.0 26000 0.4674 0.9093 0.9156 0.9093 0.9109 0.9093 0.9119 0.9093 0.9092 0.8967 0.9276 0.9255 0.9659 0.8892 0.9615 0.8577 0.8139 0.9951 0.8768 0.8473 0.8807 0.9835
0.0084 27.0 27000 0.4786 0.912 0.9190 0.9125 0.9136 0.912 0.9166 0.912 0.9123 0.9029 0.9343 0.9370 0.9606 0.8864 0.9615 0.8577 0.8233 0.9951 0.8478 0.8768 0.8899 0.9890
0.009 28.0 28000 0.4959 0.9107 0.9183 0.9103 0.9123 0.9107 0.9145 0.9107 0.9109 0.9132 0.9377 0.9198 0.9554 0.8892 0.95 0.8577 0.8202 0.9901 0.8551 0.8670 0.8899 0.9890
0.0068 29.0 29000 0.4824 0.9135 0.9199 0.9146 0.9153 0.9135 0.9172 0.9135 0.9136 0.8905 0.9310 0.9341 0.9738 0.8975 0.9692 0.8577 0.8044 0.9951 0.8804 0.8867 0.8807 0.9890
0.0085 30.0 30000 0.4846 0.9103 0.9230 0.9091 0.9140 0.9103 0.9147 0.9103 0.9105 0.9008 0.9327 0.9198 0.9790 0.8975 0.9577 0.8541 0.8170 0.9901 0.8587 0.8571 0.8807 0.9725
0.0057 31.0 31000 0.4978 0.9107 0.9132 0.9131 0.9110 0.9107 0.9142 0.9107 0.9108 0.8905 0.9293 0.9140 0.9633 0.8975 0.9692 0.8648 0.8139 1.0 0.8623 0.8768 0.8991 0.9890
0.0036 32.0 32000 0.5003 0.9077 0.9181 0.9090 0.9117 0.9077 0.9112 0.9077 0.9078 0.8864 0.9377 0.8968 0.9659 0.8947 0.9692 0.8541 0.8076 1.0 0.8587 0.8719 0.8899 0.9835
0.006 33.0 33000 0.5001 0.9087 0.9136 0.9095 0.9096 0.9087 0.9119 0.9087 0.9088 0.8967 0.9276 0.9198 0.9633 0.8975 0.9577 0.8612 0.8076 1.0 0.8623 0.8621 0.8899 0.9780
0.005 34.0 34000 0.4861 0.9117 0.9169 0.9131 0.9132 0.9117 0.9150 0.9117 0.9119 0.9008 0.9293 0.8968 0.9659 0.9058 0.9615 0.8505 0.8202 1.0 0.8841 0.8768 0.8899 0.9890
0.0046 35.0 35000 0.4997 0.9093 0.9145 0.9113 0.9111 0.9093 0.9122 0.9093 0.9092 0.8802 0.9259 0.9169 0.9633 0.9058 0.9654 0.8577 0.8013 1.0 0.8841 0.8768 0.8807 0.9890
0.0021 36.0 36000 0.5209 0.9087 0.9151 0.9101 0.9100 0.9087 0.9135 0.9087 0.9090 0.8926 0.9327 0.9226 0.9580 0.9030 0.9577 0.8505 0.8107 1.0 0.8333 0.8916 0.8899 0.9890
0.0029 37.0 37000 0.4948 0.9083 0.9120 0.9105 0.9096 0.9083 0.9109 0.9083 0.9082 0.8719 0.9310 0.9198 0.9396 0.9114 0.9692 0.8577 0.8139 1.0 0.8913 0.8571 0.8899 0.9835
0.0038 38.0 38000 0.5256 0.909 0.9160 0.9106 0.9114 0.909 0.9125 0.909 0.9091 0.9070 0.9209 0.8911 0.9738 0.9030 0.9577 0.8541 0.8139 1.0 0.8551 0.8768 0.8899 0.9945
0.0019 39.0 39000 0.5229 0.9087 0.9188 0.9105 0.9127 0.9087 0.9128 0.9087 0.9090 0.8864 0.9242 0.9198 0.9685 0.9058 0.9577 0.8541 0.8107 1.0 0.8587 0.8768 0.8899 0.9835
0.0028 40.0 40000 0.5419 0.9097 0.9194 0.9101 0.9123 0.9097 0.9145 0.9097 0.9099 0.8967 0.9377 0.9169 0.9738 0.8975 0.95 0.8541 0.8044 1.0 0.8442 0.8768 0.8899 0.9890
0.0015 41.0 41000 0.5141 0.91 0.9114 0.9133 0.9102 0.91 0.9133 0.91 0.9101 0.8884 0.9158 0.9054 0.9685 0.9086 0.9654 0.8612 0.8013 1.0 0.8877 0.8867 0.8899 0.9945
0.0024 42.0 42000 0.5203 0.9115 0.9163 0.9135 0.9132 0.9115 0.9142 0.9115 0.9115 0.9029 0.9226 0.8968 0.9633 0.9114 0.9654 0.8612 0.8139 1.0 0.8768 0.8768 0.8899 0.9945
0.0016 43.0 43000 0.5236 0.9123 0.9148 0.9159 0.9134 0.9123 0.9153 0.9123 0.9123 0.8781 0.9226 0.9054 0.9633 0.9086 1.0 0.8648 0.8107 1.0 0.8877 0.8867 0.8899 0.9890
0.0015 44.0 44000 0.5263 0.9093 0.9137 0.9118 0.9110 0.9093 0.9119 0.9093 0.9092 0.8884 0.9158 0.9026 0.9711 0.9058 0.9692 0.8541 0.8170 1.0 0.8768 0.8768 0.8807 0.9945
0.0026 45.0 45000 0.5248 0.9107 0.9180 0.9120 0.9134 0.9107 0.9136 0.9107 0.9108 0.9008 0.9209 0.9169 0.9711 0.9058 0.9615 0.8541 0.8107 1.0 0.8623 0.8768 0.8807 0.9945
0.0002 46.0 46000 0.5317 0.91 0.9144 0.9120 0.9113 0.91 0.9130 0.91 0.9100 0.8905 0.9226 0.9026 0.9711 0.9003 0.9692 0.8541 0.8170 1.0 0.8768 0.8768 0.8807 0.9945
0.0017 47.0 47000 0.5278 0.9117 0.9182 0.9140 0.9147 0.9117 0.9144 0.9117 0.9118 0.8843 0.9209 0.9169 0.9685 0.9086 0.9654 0.8648 0.8170 1.0 0.8841 0.8818 0.8807 0.9890
0.0022 48.0 48000 0.5294 0.9093 0.9135 0.9114 0.9104 0.9093 0.9127 0.9093 0.9093 0.8802 0.9226 0.9112 0.9711 0.9030 0.9692 0.8505 0.8170 1.0 0.8768 0.8768 0.8807 0.9890
0.0013 49.0 49000 0.5299 0.9097 0.9148 0.9117 0.9115 0.9097 0.9128 0.9097 0.9098 0.8864 0.9209 0.9083 0.9711 0.9058 0.9692 0.8541 0.8170 1.0 0.8732 0.8768 0.8807 0.9890
0.0012 50.0 50000 0.5314 0.9097 0.9151 0.9117 0.9116 0.9097 0.9128 0.9097 0.9098 0.8864 0.9209 0.9083 0.9711 0.9058 0.9692 0.8541 0.8170 1.0 0.8732 0.8768 0.8807 0.9890

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
11.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for marcelovidigal/albert-base-v2-2-contract-sections-classification-v4-50

Finetuned
(210)
this model