distilbert-base-multilingual-cased-2-contract-sections-classification-v4-50
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2691
- Accuracy Evaluate: 0.9623
- Precision Evaluate: 0.9580
- Recall Evaluate: 0.9662
- F1 Evaluate: 0.9614
- Accuracy Sklearn: 0.9623
- Precision Sklearn: 0.9634
- Recall Sklearn: 0.9623
- F1 Sklearn: 0.9624
- Acuracia Rotulo Objeto: 0.9835
- Acuracia Rotulo Obrigacoes: 0.9461
- Acuracia Rotulo Valor: 0.9513
- Acuracia Rotulo Vigencia: 0.9948
- Acuracia Rotulo Rescisao: 0.9114
- Acuracia Rotulo Foro: 1.0
- Acuracia Rotulo Reajuste: 0.9573
- Acuracia Rotulo Fiscalizacao: 0.9274
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.9565
- Acuracia Rotulo Casos Omissos: 0.9409
- Acuracia Rotulo Sancoes: 0.9908
- Acuracia Rotulo Dotacao Orcamentaria: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9398 | 1.0 | 1000 | 1.7897 | 0.5843 | 0.6911 | 0.5394 | 0.5537 | 0.5843 | 0.6859 | 0.5843 | 0.5715 | 0.9194 | 0.7155 | 0.5731 | 0.5906 | 0.6787 | 0.2038 | 0.7758 | 0.2177 | 0.8473 | 0.2210 | 0.9113 | 0.3578 | 0.0 |
0.9918 | 2.0 | 2000 | 0.9569 | 0.8448 | 0.8604 | 0.8426 | 0.8441 | 0.8448 | 0.8560 | 0.8448 | 0.8437 | 0.9545 | 0.7593 | 0.9312 | 0.8346 | 0.9114 | 0.9385 | 0.9217 | 0.7634 | 0.9310 | 0.6196 | 0.9163 | 0.8899 | 0.5824 |
0.5019 | 3.0 | 3000 | 0.5333 | 0.9058 | 0.9079 | 0.9179 | 0.9101 | 0.9058 | 0.9123 | 0.9058 | 0.9055 | 0.9773 | 0.7559 | 0.9341 | 0.9659 | 0.9114 | 0.9385 | 0.9751 | 0.8549 | 0.9655 | 0.8188 | 0.9163 | 0.9358 | 0.9835 |
0.2823 | 4.0 | 4000 | 0.3519 | 0.9237 | 0.9256 | 0.9358 | 0.9280 | 0.9237 | 0.9291 | 0.9237 | 0.9235 | 0.9835 | 0.7761 | 0.9398 | 0.9843 | 0.9252 | 0.9962 | 0.9929 | 0.8864 | 0.9754 | 0.8442 | 0.9163 | 0.9450 | 1.0 |
0.173 | 5.0 | 5000 | 0.2748 | 0.935 | 0.9328 | 0.9440 | 0.9363 | 0.935 | 0.9384 | 0.935 | 0.9352 | 0.9690 | 0.8485 | 0.9542 | 0.9843 | 0.9169 | 1.0 | 0.9964 | 0.8675 | 0.9901 | 0.8659 | 0.9163 | 0.9633 | 1.0 |
0.1141 | 6.0 | 6000 | 0.2648 | 0.9337 | 0.9327 | 0.9458 | 0.9369 | 0.9337 | 0.9388 | 0.9337 | 0.9342 | 0.9752 | 0.8064 | 0.9456 | 0.9948 | 0.9197 | 1.0 | 0.9964 | 0.8833 | 0.9951 | 0.8949 | 0.9212 | 0.9633 | 1.0 |
0.0959 | 7.0 | 7000 | 0.2332 | 0.9447 | 0.9412 | 0.9512 | 0.9444 | 0.9447 | 0.9473 | 0.9447 | 0.9450 | 0.9669 | 0.8956 | 0.9513 | 0.9948 | 0.9141 | 1.0 | 0.9964 | 0.8675 | 0.9901 | 0.8949 | 0.9212 | 0.9725 | 1.0 |
0.0785 | 8.0 | 8000 | 0.2453 | 0.94 | 0.9371 | 0.9496 | 0.9412 | 0.94 | 0.9440 | 0.94 | 0.9403 | 0.9773 | 0.8468 | 0.9398 | 0.9948 | 0.9141 | 1.0 | 1.0 | 0.8927 | 0.9901 | 0.8949 | 0.9212 | 0.9725 | 1.0 |
0.0586 | 9.0 | 9000 | 0.2317 | 0.945 | 0.9407 | 0.9522 | 0.9445 | 0.945 | 0.9481 | 0.945 | 0.9453 | 0.9752 | 0.8822 | 0.9427 | 0.9948 | 0.9086 | 1.0 | 1.0 | 0.8927 | 0.9901 | 0.8986 | 0.9212 | 0.9725 | 1.0 |
0.049 | 10.0 | 10000 | 0.2366 | 0.9447 | 0.9399 | 0.9528 | 0.9443 | 0.9447 | 0.9482 | 0.9447 | 0.9451 | 0.9752 | 0.8771 | 0.9427 | 0.9974 | 0.9086 | 1.0 | 1.0 | 0.8927 | 0.9901 | 0.8949 | 0.9261 | 0.9817 | 1.0 |
0.0506 | 11.0 | 11000 | 0.2213 | 0.9515 | 0.9456 | 0.9564 | 0.9493 | 0.9515 | 0.9538 | 0.9515 | 0.9517 | 0.9814 | 0.9209 | 0.9312 | 0.9974 | 0.9141 | 1.0 | 1.0 | 0.8896 | 0.9901 | 0.8913 | 0.9360 | 0.9817 | 1.0 |
0.0362 | 12.0 | 12000 | 0.2341 | 0.9515 | 0.9453 | 0.9588 | 0.9503 | 0.9515 | 0.9540 | 0.9515 | 0.9518 | 0.9731 | 0.9074 | 0.9312 | 0.9974 | 0.9086 | 1.0 | 0.9964 | 0.8896 | 0.9951 | 0.9384 | 0.9360 | 0.9908 | 1.0 |
0.0412 | 13.0 | 13000 | 0.2332 | 0.9487 | 0.9444 | 0.9555 | 0.9485 | 0.9487 | 0.9510 | 0.9487 | 0.9489 | 0.9814 | 0.8956 | 0.9341 | 0.9974 | 0.9197 | 1.0 | 0.9929 | 0.8927 | 0.9951 | 0.8949 | 0.9360 | 0.9817 | 1.0 |
0.0261 | 14.0 | 14000 | 0.2384 | 0.956 | 0.9497 | 0.9605 | 0.9533 | 0.956 | 0.9583 | 0.956 | 0.9563 | 0.9814 | 0.9360 | 0.9398 | 0.9974 | 0.9086 | 1.0 | 0.9822 | 0.8864 | 0.9951 | 0.9420 | 0.9261 | 0.9908 | 1.0 |
0.0268 | 15.0 | 15000 | 0.2328 | 0.9583 | 0.9516 | 0.9636 | 0.9558 | 0.9583 | 0.9606 | 0.9583 | 0.9585 | 0.9773 | 0.9360 | 0.9341 | 0.9974 | 0.9086 | 1.0 | 0.9964 | 0.8896 | 1.0 | 0.9601 | 0.9360 | 0.9908 | 1.0 |
0.0248 | 16.0 | 16000 | 0.2271 | 0.9593 | 0.9528 | 0.9641 | 0.9569 | 0.9593 | 0.9613 | 0.9593 | 0.9595 | 0.9814 | 0.9394 | 0.9370 | 0.9974 | 0.9086 | 1.0 | 0.9929 | 0.8896 | 1.0 | 0.9601 | 0.9360 | 0.9908 | 1.0 |
0.0235 | 17.0 | 17000 | 0.2273 | 0.9607 | 0.9542 | 0.9651 | 0.9580 | 0.9607 | 0.9629 | 0.9607 | 0.9610 | 0.9773 | 0.9495 | 0.9427 | 0.9974 | 0.9086 | 1.0 | 0.9929 | 0.8896 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0214 | 18.0 | 18000 | 0.2160 | 0.9607 | 0.9562 | 0.9655 | 0.9599 | 0.9607 | 0.9622 | 0.9607 | 0.9609 | 0.9876 | 0.9327 | 0.9456 | 0.9974 | 0.9141 | 1.0 | 0.9822 | 0.9117 | 0.9951 | 0.9529 | 0.9409 | 0.9908 | 1.0 |
0.0207 | 19.0 | 19000 | 0.2345 | 0.9597 | 0.9534 | 0.9644 | 0.9575 | 0.9597 | 0.9618 | 0.9597 | 0.9600 | 0.9876 | 0.9327 | 0.9484 | 0.9974 | 0.9058 | 1.0 | 0.9644 | 0.9148 | 1.0 | 0.9638 | 0.9310 | 0.9908 | 1.0 |
0.0166 | 20.0 | 20000 | 0.2340 | 0.9587 | 0.9538 | 0.9635 | 0.9576 | 0.9587 | 0.9602 | 0.9587 | 0.9589 | 0.9814 | 0.9360 | 0.9484 | 0.9974 | 0.9086 | 1.0 | 0.9573 | 0.9085 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0167 | 21.0 | 21000 | 0.2487 | 0.96 | 0.9532 | 0.9639 | 0.9570 | 0.96 | 0.9621 | 0.96 | 0.9603 | 0.9814 | 0.9495 | 0.9484 | 0.9974 | 0.9086 | 1.0 | 0.9680 | 0.8896 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0094 | 22.0 | 22000 | 0.2476 | 0.9593 | 0.9535 | 0.9633 | 0.9571 | 0.9593 | 0.9610 | 0.9593 | 0.9595 | 0.9835 | 0.9444 | 0.9484 | 0.9974 | 0.9086 | 1.0 | 0.9680 | 0.8896 | 1.0 | 0.9565 | 0.9360 | 0.9908 | 1.0 |
0.0119 | 23.0 | 23000 | 0.2461 | 0.9597 | 0.9545 | 0.9650 | 0.9587 | 0.9597 | 0.9614 | 0.9597 | 0.9600 | 0.9793 | 0.9310 | 0.9484 | 0.9974 | 0.9086 | 1.0 | 0.9644 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0148 | 24.0 | 24000 | 0.2768 | 0.9567 | 0.9510 | 0.9604 | 0.9539 | 0.9567 | 0.9593 | 0.9567 | 0.9571 | 0.9814 | 0.9512 | 0.9484 | 0.9921 | 0.9058 | 1.0 | 0.9644 | 0.8801 | 1.0 | 0.9348 | 0.9360 | 0.9908 | 1.0 |
0.0143 | 25.0 | 25000 | 0.2564 | 0.9587 | 0.9531 | 0.9630 | 0.9567 | 0.9587 | 0.9604 | 0.9587 | 0.9589 | 0.9814 | 0.9444 | 0.9484 | 0.9974 | 0.9058 | 1.0 | 0.9644 | 0.8896 | 1.0 | 0.9601 | 0.9360 | 0.9908 | 1.0 |
0.0088 | 26.0 | 26000 | 0.2479 | 0.9607 | 0.9547 | 0.9654 | 0.9589 | 0.9607 | 0.9624 | 0.9607 | 0.9610 | 0.9814 | 0.9394 | 0.9456 | 0.9974 | 0.9058 | 1.0 | 0.9680 | 0.9243 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.01 | 27.0 | 27000 | 0.2526 | 0.9595 | 0.9541 | 0.9637 | 0.9581 | 0.9595 | 0.9611 | 0.9595 | 0.9597 | 0.9814 | 0.9310 | 0.9513 | 0.9974 | 0.9058 | 1.0 | 0.9609 | 0.9274 | 1.0 | 0.9601 | 0.9409 | 0.9725 | 1.0 |
0.0091 | 28.0 | 28000 | 0.2517 | 0.9613 | 0.9561 | 0.9659 | 0.9601 | 0.9613 | 0.9628 | 0.9613 | 0.9615 | 0.9814 | 0.9377 | 0.9513 | 0.9974 | 0.9058 | 1.0 | 0.9644 | 0.9274 | 1.0 | 0.9601 | 0.9409 | 0.9908 | 1.0 |
0.0113 | 29.0 | 29000 | 0.2497 | 0.9607 | 0.9565 | 0.9647 | 0.9598 | 0.9607 | 0.9617 | 0.9607 | 0.9608 | 0.9814 | 0.9478 | 0.9484 | 0.9974 | 0.9114 | 1.0 | 0.9644 | 0.9054 | 1.0 | 0.9529 | 0.9409 | 0.9908 | 1.0 |
0.0104 | 30.0 | 30000 | 0.2702 | 0.9597 | 0.9547 | 0.9625 | 0.9574 | 0.9597 | 0.9613 | 0.9597 | 0.9599 | 0.9835 | 0.9545 | 0.9484 | 0.9948 | 0.9058 | 1.0 | 0.9644 | 0.8927 | 1.0 | 0.9601 | 0.9261 | 0.9817 | 1.0 |
0.0114 | 31.0 | 31000 | 0.2568 | 0.9613 | 0.9575 | 0.9654 | 0.9607 | 0.9613 | 0.9623 | 0.9613 | 0.9614 | 0.9793 | 0.9461 | 0.9484 | 0.9974 | 0.9114 | 1.0 | 0.9644 | 0.9148 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.009 | 32.0 | 32000 | 0.2590 | 0.9597 | 0.9547 | 0.9641 | 0.9584 | 0.9597 | 0.9611 | 0.9597 | 0.9599 | 0.9752 | 0.9478 | 0.9484 | 0.9948 | 0.9086 | 1.0 | 0.9644 | 0.9022 | 1.0 | 0.9601 | 0.9409 | 0.9908 | 1.0 |
0.0106 | 33.0 | 33000 | 0.2540 | 0.9613 | 0.9575 | 0.9640 | 0.9602 | 0.9613 | 0.9622 | 0.9613 | 0.9614 | 0.9835 | 0.9512 | 0.9484 | 0.9921 | 0.9114 | 1.0 | 0.9644 | 0.9117 | 1.0 | 0.9565 | 0.9409 | 0.9725 | 1.0 |
0.0083 | 34.0 | 34000 | 0.2545 | 0.962 | 0.9579 | 0.9656 | 0.9611 | 0.962 | 0.9631 | 0.962 | 0.9621 | 0.9793 | 0.9478 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9644 | 0.9243 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.008 | 35.0 | 35000 | 0.2586 | 0.9617 | 0.9559 | 0.9654 | 0.9597 | 0.9617 | 0.9632 | 0.9617 | 0.9620 | 0.9814 | 0.9512 | 0.9513 | 0.9948 | 0.9058 | 1.0 | 0.9537 | 0.9243 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0042 | 36.0 | 36000 | 0.2533 | 0.9623 | 0.9581 | 0.9653 | 0.9611 | 0.9623 | 0.9633 | 0.9623 | 0.9624 | 0.9855 | 0.9495 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9537 | 0.9243 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.0056 | 37.0 | 37000 | 0.2637 | 0.9615 | 0.9565 | 0.9650 | 0.9598 | 0.9615 | 0.9628 | 0.9615 | 0.9616 | 0.9876 | 0.9478 | 0.9513 | 0.9921 | 0.9058 | 1.0 | 0.9537 | 0.9243 | 1.0 | 0.9601 | 0.9310 | 0.9908 | 1.0 |
0.0075 | 38.0 | 38000 | 0.2632 | 0.9613 | 0.9573 | 0.9645 | 0.9603 | 0.9613 | 0.9623 | 0.9613 | 0.9614 | 0.9835 | 0.9461 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9502 | 0.9274 | 1.0 | 0.9565 | 0.9360 | 0.9817 | 1.0 |
0.0041 | 39.0 | 39000 | 0.2641 | 0.9595 | 0.9557 | 0.9629 | 0.9586 | 0.9595 | 0.9605 | 0.9595 | 0.9596 | 0.9752 | 0.9529 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.8959 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.006 | 40.0 | 40000 | 0.2645 | 0.962 | 0.9574 | 0.9654 | 0.9607 | 0.962 | 0.9631 | 0.962 | 0.9621 | 0.9855 | 0.9461 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.9243 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.0064 | 41.0 | 41000 | 0.2618 | 0.9603 | 0.9563 | 0.9641 | 0.9594 | 0.9603 | 0.9612 | 0.9603 | 0.9603 | 0.9855 | 0.9478 | 0.9513 | 0.9921 | 0.9114 | 1.0 | 0.9573 | 0.8991 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0046 | 42.0 | 42000 | 0.2679 | 0.9605 | 0.9573 | 0.9640 | 0.9600 | 0.9605 | 0.9613 | 0.9605 | 0.9605 | 0.9835 | 0.9529 | 0.9513 | 0.9921 | 0.9114 | 1.0 | 0.9573 | 0.8959 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0065 | 43.0 | 43000 | 0.2668 | 0.962 | 0.9578 | 0.9653 | 0.9609 | 0.962 | 0.9630 | 0.962 | 0.9621 | 0.9835 | 0.9495 | 0.9513 | 0.9921 | 0.9114 | 1.0 | 0.9573 | 0.9243 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.0026 | 44.0 | 44000 | 0.2724 | 0.96 | 0.9550 | 0.9635 | 0.9581 | 0.96 | 0.9615 | 0.96 | 0.9602 | 0.9835 | 0.9562 | 0.9513 | 0.9843 | 0.9058 | 1.0 | 0.9573 | 0.8959 | 1.0 | 0.9601 | 0.9409 | 0.9908 | 1.0 |
0.0081 | 45.0 | 45000 | 0.2671 | 0.9617 | 0.9577 | 0.9653 | 0.9609 | 0.9617 | 0.9628 | 0.9617 | 0.9619 | 0.9835 | 0.9444 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.005 | 46.0 | 46000 | 0.2672 | 0.962 | 0.9576 | 0.9654 | 0.9609 | 0.962 | 0.9631 | 0.962 | 0.9621 | 0.9835 | 0.9461 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.0048 | 47.0 | 47000 | 0.2694 | 0.9623 | 0.9577 | 0.9662 | 0.9612 | 0.9623 | 0.9635 | 0.9623 | 0.9624 | 0.9835 | 0.9461 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0068 | 48.0 | 48000 | 0.2693 | 0.9627 | 0.9576 | 0.9663 | 0.9611 | 0.9627 | 0.9641 | 0.9627 | 0.9629 | 0.9835 | 0.9512 | 0.9513 | 0.9921 | 0.9114 | 1.0 | 0.9573 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0041 | 49.0 | 49000 | 0.2695 | 0.9623 | 0.9580 | 0.9662 | 0.9614 | 0.9623 | 0.9634 | 0.9623 | 0.9624 | 0.9835 | 0.9461 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
0.0037 | 50.0 | 50000 | 0.2691 | 0.9623 | 0.9580 | 0.9662 | 0.9614 | 0.9623 | 0.9634 | 0.9623 | 0.9624 | 0.9835 | 0.9461 | 0.9513 | 0.9948 | 0.9114 | 1.0 | 0.9573 | 0.9274 | 1.0 | 0.9565 | 0.9409 | 0.9908 | 1.0 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.