Visualize in Weights & Biases Visualize in Weights & Biases

distilbert-base-multilingual-cased-2-contract-sections-classification-v4-50

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2691
  • Accuracy Evaluate: 0.9623
  • Precision Evaluate: 0.9580
  • Recall Evaluate: 0.9662
  • F1 Evaluate: 0.9614
  • Accuracy Sklearn: 0.9623
  • Precision Sklearn: 0.9634
  • Recall Sklearn: 0.9623
  • F1 Sklearn: 0.9624
  • Acuracia Rotulo Objeto: 0.9835
  • Acuracia Rotulo Obrigacoes: 0.9461
  • Acuracia Rotulo Valor: 0.9513
  • Acuracia Rotulo Vigencia: 0.9948
  • Acuracia Rotulo Rescisao: 0.9114
  • Acuracia Rotulo Foro: 1.0
  • Acuracia Rotulo Reajuste: 0.9573
  • Acuracia Rotulo Fiscalizacao: 0.9274
  • Acuracia Rotulo Publicacao: 1.0
  • Acuracia Rotulo Pagamento: 0.9565
  • Acuracia Rotulo Casos Omissos: 0.9409
  • Acuracia Rotulo Sancoes: 0.9908
  • Acuracia Rotulo Dotacao Orcamentaria: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
1.9398 1.0 1000 1.7897 0.5843 0.6911 0.5394 0.5537 0.5843 0.6859 0.5843 0.5715 0.9194 0.7155 0.5731 0.5906 0.6787 0.2038 0.7758 0.2177 0.8473 0.2210 0.9113 0.3578 0.0
0.9918 2.0 2000 0.9569 0.8448 0.8604 0.8426 0.8441 0.8448 0.8560 0.8448 0.8437 0.9545 0.7593 0.9312 0.8346 0.9114 0.9385 0.9217 0.7634 0.9310 0.6196 0.9163 0.8899 0.5824
0.5019 3.0 3000 0.5333 0.9058 0.9079 0.9179 0.9101 0.9058 0.9123 0.9058 0.9055 0.9773 0.7559 0.9341 0.9659 0.9114 0.9385 0.9751 0.8549 0.9655 0.8188 0.9163 0.9358 0.9835
0.2823 4.0 4000 0.3519 0.9237 0.9256 0.9358 0.9280 0.9237 0.9291 0.9237 0.9235 0.9835 0.7761 0.9398 0.9843 0.9252 0.9962 0.9929 0.8864 0.9754 0.8442 0.9163 0.9450 1.0
0.173 5.0 5000 0.2748 0.935 0.9328 0.9440 0.9363 0.935 0.9384 0.935 0.9352 0.9690 0.8485 0.9542 0.9843 0.9169 1.0 0.9964 0.8675 0.9901 0.8659 0.9163 0.9633 1.0
0.1141 6.0 6000 0.2648 0.9337 0.9327 0.9458 0.9369 0.9337 0.9388 0.9337 0.9342 0.9752 0.8064 0.9456 0.9948 0.9197 1.0 0.9964 0.8833 0.9951 0.8949 0.9212 0.9633 1.0
0.0959 7.0 7000 0.2332 0.9447 0.9412 0.9512 0.9444 0.9447 0.9473 0.9447 0.9450 0.9669 0.8956 0.9513 0.9948 0.9141 1.0 0.9964 0.8675 0.9901 0.8949 0.9212 0.9725 1.0
0.0785 8.0 8000 0.2453 0.94 0.9371 0.9496 0.9412 0.94 0.9440 0.94 0.9403 0.9773 0.8468 0.9398 0.9948 0.9141 1.0 1.0 0.8927 0.9901 0.8949 0.9212 0.9725 1.0
0.0586 9.0 9000 0.2317 0.945 0.9407 0.9522 0.9445 0.945 0.9481 0.945 0.9453 0.9752 0.8822 0.9427 0.9948 0.9086 1.0 1.0 0.8927 0.9901 0.8986 0.9212 0.9725 1.0
0.049 10.0 10000 0.2366 0.9447 0.9399 0.9528 0.9443 0.9447 0.9482 0.9447 0.9451 0.9752 0.8771 0.9427 0.9974 0.9086 1.0 1.0 0.8927 0.9901 0.8949 0.9261 0.9817 1.0
0.0506 11.0 11000 0.2213 0.9515 0.9456 0.9564 0.9493 0.9515 0.9538 0.9515 0.9517 0.9814 0.9209 0.9312 0.9974 0.9141 1.0 1.0 0.8896 0.9901 0.8913 0.9360 0.9817 1.0
0.0362 12.0 12000 0.2341 0.9515 0.9453 0.9588 0.9503 0.9515 0.9540 0.9515 0.9518 0.9731 0.9074 0.9312 0.9974 0.9086 1.0 0.9964 0.8896 0.9951 0.9384 0.9360 0.9908 1.0
0.0412 13.0 13000 0.2332 0.9487 0.9444 0.9555 0.9485 0.9487 0.9510 0.9487 0.9489 0.9814 0.8956 0.9341 0.9974 0.9197 1.0 0.9929 0.8927 0.9951 0.8949 0.9360 0.9817 1.0
0.0261 14.0 14000 0.2384 0.956 0.9497 0.9605 0.9533 0.956 0.9583 0.956 0.9563 0.9814 0.9360 0.9398 0.9974 0.9086 1.0 0.9822 0.8864 0.9951 0.9420 0.9261 0.9908 1.0
0.0268 15.0 15000 0.2328 0.9583 0.9516 0.9636 0.9558 0.9583 0.9606 0.9583 0.9585 0.9773 0.9360 0.9341 0.9974 0.9086 1.0 0.9964 0.8896 1.0 0.9601 0.9360 0.9908 1.0
0.0248 16.0 16000 0.2271 0.9593 0.9528 0.9641 0.9569 0.9593 0.9613 0.9593 0.9595 0.9814 0.9394 0.9370 0.9974 0.9086 1.0 0.9929 0.8896 1.0 0.9601 0.9360 0.9908 1.0
0.0235 17.0 17000 0.2273 0.9607 0.9542 0.9651 0.9580 0.9607 0.9629 0.9607 0.9610 0.9773 0.9495 0.9427 0.9974 0.9086 1.0 0.9929 0.8896 1.0 0.9565 0.9409 0.9908 1.0
0.0214 18.0 18000 0.2160 0.9607 0.9562 0.9655 0.9599 0.9607 0.9622 0.9607 0.9609 0.9876 0.9327 0.9456 0.9974 0.9141 1.0 0.9822 0.9117 0.9951 0.9529 0.9409 0.9908 1.0
0.0207 19.0 19000 0.2345 0.9597 0.9534 0.9644 0.9575 0.9597 0.9618 0.9597 0.9600 0.9876 0.9327 0.9484 0.9974 0.9058 1.0 0.9644 0.9148 1.0 0.9638 0.9310 0.9908 1.0
0.0166 20.0 20000 0.2340 0.9587 0.9538 0.9635 0.9576 0.9587 0.9602 0.9587 0.9589 0.9814 0.9360 0.9484 0.9974 0.9086 1.0 0.9573 0.9085 1.0 0.9565 0.9409 0.9908 1.0
0.0167 21.0 21000 0.2487 0.96 0.9532 0.9639 0.9570 0.96 0.9621 0.96 0.9603 0.9814 0.9495 0.9484 0.9974 0.9086 1.0 0.9680 0.8896 1.0 0.9565 0.9409 0.9908 1.0
0.0094 22.0 22000 0.2476 0.9593 0.9535 0.9633 0.9571 0.9593 0.9610 0.9593 0.9595 0.9835 0.9444 0.9484 0.9974 0.9086 1.0 0.9680 0.8896 1.0 0.9565 0.9360 0.9908 1.0
0.0119 23.0 23000 0.2461 0.9597 0.9545 0.9650 0.9587 0.9597 0.9614 0.9597 0.9600 0.9793 0.9310 0.9484 0.9974 0.9086 1.0 0.9644 0.9274 1.0 0.9565 0.9409 0.9908 1.0
0.0148 24.0 24000 0.2768 0.9567 0.9510 0.9604 0.9539 0.9567 0.9593 0.9567 0.9571 0.9814 0.9512 0.9484 0.9921 0.9058 1.0 0.9644 0.8801 1.0 0.9348 0.9360 0.9908 1.0
0.0143 25.0 25000 0.2564 0.9587 0.9531 0.9630 0.9567 0.9587 0.9604 0.9587 0.9589 0.9814 0.9444 0.9484 0.9974 0.9058 1.0 0.9644 0.8896 1.0 0.9601 0.9360 0.9908 1.0
0.0088 26.0 26000 0.2479 0.9607 0.9547 0.9654 0.9589 0.9607 0.9624 0.9607 0.9610 0.9814 0.9394 0.9456 0.9974 0.9058 1.0 0.9680 0.9243 1.0 0.9565 0.9409 0.9908 1.0
0.01 27.0 27000 0.2526 0.9595 0.9541 0.9637 0.9581 0.9595 0.9611 0.9595 0.9597 0.9814 0.9310 0.9513 0.9974 0.9058 1.0 0.9609 0.9274 1.0 0.9601 0.9409 0.9725 1.0
0.0091 28.0 28000 0.2517 0.9613 0.9561 0.9659 0.9601 0.9613 0.9628 0.9613 0.9615 0.9814 0.9377 0.9513 0.9974 0.9058 1.0 0.9644 0.9274 1.0 0.9601 0.9409 0.9908 1.0
0.0113 29.0 29000 0.2497 0.9607 0.9565 0.9647 0.9598 0.9607 0.9617 0.9607 0.9608 0.9814 0.9478 0.9484 0.9974 0.9114 1.0 0.9644 0.9054 1.0 0.9529 0.9409 0.9908 1.0
0.0104 30.0 30000 0.2702 0.9597 0.9547 0.9625 0.9574 0.9597 0.9613 0.9597 0.9599 0.9835 0.9545 0.9484 0.9948 0.9058 1.0 0.9644 0.8927 1.0 0.9601 0.9261 0.9817 1.0
0.0114 31.0 31000 0.2568 0.9613 0.9575 0.9654 0.9607 0.9613 0.9623 0.9613 0.9614 0.9793 0.9461 0.9484 0.9974 0.9114 1.0 0.9644 0.9148 1.0 0.9565 0.9409 0.9908 1.0
0.009 32.0 32000 0.2590 0.9597 0.9547 0.9641 0.9584 0.9597 0.9611 0.9597 0.9599 0.9752 0.9478 0.9484 0.9948 0.9086 1.0 0.9644 0.9022 1.0 0.9601 0.9409 0.9908 1.0
0.0106 33.0 33000 0.2540 0.9613 0.9575 0.9640 0.9602 0.9613 0.9622 0.9613 0.9614 0.9835 0.9512 0.9484 0.9921 0.9114 1.0 0.9644 0.9117 1.0 0.9565 0.9409 0.9725 1.0
0.0083 34.0 34000 0.2545 0.962 0.9579 0.9656 0.9611 0.962 0.9631 0.962 0.9621 0.9793 0.9478 0.9513 0.9948 0.9114 1.0 0.9644 0.9243 1.0 0.9565 0.9409 0.9817 1.0
0.008 35.0 35000 0.2586 0.9617 0.9559 0.9654 0.9597 0.9617 0.9632 0.9617 0.9620 0.9814 0.9512 0.9513 0.9948 0.9058 1.0 0.9537 0.9243 1.0 0.9565 0.9409 0.9908 1.0
0.0042 36.0 36000 0.2533 0.9623 0.9581 0.9653 0.9611 0.9623 0.9633 0.9623 0.9624 0.9855 0.9495 0.9513 0.9948 0.9114 1.0 0.9537 0.9243 1.0 0.9565 0.9409 0.9817 1.0
0.0056 37.0 37000 0.2637 0.9615 0.9565 0.9650 0.9598 0.9615 0.9628 0.9615 0.9616 0.9876 0.9478 0.9513 0.9921 0.9058 1.0 0.9537 0.9243 1.0 0.9601 0.9310 0.9908 1.0
0.0075 38.0 38000 0.2632 0.9613 0.9573 0.9645 0.9603 0.9613 0.9623 0.9613 0.9614 0.9835 0.9461 0.9513 0.9948 0.9114 1.0 0.9502 0.9274 1.0 0.9565 0.9360 0.9817 1.0
0.0041 39.0 39000 0.2641 0.9595 0.9557 0.9629 0.9586 0.9595 0.9605 0.9595 0.9596 0.9752 0.9529 0.9513 0.9948 0.9114 1.0 0.9573 0.8959 1.0 0.9565 0.9409 0.9817 1.0
0.006 40.0 40000 0.2645 0.962 0.9574 0.9654 0.9607 0.962 0.9631 0.962 0.9621 0.9855 0.9461 0.9513 0.9948 0.9114 1.0 0.9573 0.9243 1.0 0.9565 0.9409 0.9817 1.0
0.0064 41.0 41000 0.2618 0.9603 0.9563 0.9641 0.9594 0.9603 0.9612 0.9603 0.9603 0.9855 0.9478 0.9513 0.9921 0.9114 1.0 0.9573 0.8991 1.0 0.9565 0.9409 0.9908 1.0
0.0046 42.0 42000 0.2679 0.9605 0.9573 0.9640 0.9600 0.9605 0.9613 0.9605 0.9605 0.9835 0.9529 0.9513 0.9921 0.9114 1.0 0.9573 0.8959 1.0 0.9565 0.9409 0.9908 1.0
0.0065 43.0 43000 0.2668 0.962 0.9578 0.9653 0.9609 0.962 0.9630 0.962 0.9621 0.9835 0.9495 0.9513 0.9921 0.9114 1.0 0.9573 0.9243 1.0 0.9565 0.9409 0.9817 1.0
0.0026 44.0 44000 0.2724 0.96 0.9550 0.9635 0.9581 0.96 0.9615 0.96 0.9602 0.9835 0.9562 0.9513 0.9843 0.9058 1.0 0.9573 0.8959 1.0 0.9601 0.9409 0.9908 1.0
0.0081 45.0 45000 0.2671 0.9617 0.9577 0.9653 0.9609 0.9617 0.9628 0.9617 0.9619 0.9835 0.9444 0.9513 0.9948 0.9114 1.0 0.9573 0.9274 1.0 0.9565 0.9409 0.9817 1.0
0.005 46.0 46000 0.2672 0.962 0.9576 0.9654 0.9609 0.962 0.9631 0.962 0.9621 0.9835 0.9461 0.9513 0.9948 0.9114 1.0 0.9573 0.9274 1.0 0.9565 0.9409 0.9817 1.0
0.0048 47.0 47000 0.2694 0.9623 0.9577 0.9662 0.9612 0.9623 0.9635 0.9623 0.9624 0.9835 0.9461 0.9513 0.9948 0.9114 1.0 0.9573 0.9274 1.0 0.9565 0.9409 0.9908 1.0
0.0068 48.0 48000 0.2693 0.9627 0.9576 0.9663 0.9611 0.9627 0.9641 0.9627 0.9629 0.9835 0.9512 0.9513 0.9921 0.9114 1.0 0.9573 0.9274 1.0 0.9565 0.9409 0.9908 1.0
0.0041 49.0 49000 0.2695 0.9623 0.9580 0.9662 0.9614 0.9623 0.9634 0.9623 0.9624 0.9835 0.9461 0.9513 0.9948 0.9114 1.0 0.9573 0.9274 1.0 0.9565 0.9409 0.9908 1.0
0.0037 50.0 50000 0.2691 0.9623 0.9580 0.9662 0.9614 0.9623 0.9634 0.9623 0.9624 0.9835 0.9461 0.9513 0.9948 0.9114 1.0 0.9573 0.9274 1.0 0.9565 0.9409 0.9908 1.0

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for marcelovidigal/distilbert-base-multilingual-cased-2-contract-sections-classification-v4-50

Finetuned
(241)
this model