Visualize in Weights & Biases Visualize in Weights & Biases

xlm-roberta-base-2-contract-sections-classification-v4-50

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2435
  • Accuracy Evaluate: 0.9653
  • Precision Evaluate: 0.9654
  • Recall Evaluate: 0.9677
  • F1 Evaluate: 0.9662
  • Accuracy Sklearn: 0.9653
  • Precision Sklearn: 0.9656
  • Recall Sklearn: 0.9653
  • F1 Sklearn: 0.9652
  • Acuracia Rotulo Objeto: 0.9855
  • Acuracia Rotulo Obrigacoes: 0.9646
  • Acuracia Rotulo Valor: 0.9398
  • Acuracia Rotulo Vigencia: 0.9816
  • Acuracia Rotulo Rescisao: 0.9640
  • Acuracia Rotulo Foro: 0.95
  • Acuracia Rotulo Reajuste: 0.9751
  • Acuracia Rotulo Fiscalizacao: 0.8927
  • Acuracia Rotulo Publicacao: 1.0
  • Acuracia Rotulo Pagamento: 0.9855
  • Acuracia Rotulo Casos Omissos: 0.9409
  • Acuracia Rotulo Sancoes: 1.0
  • Acuracia Rotulo Dotacao Orcamentaria: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Evaluate Precision Evaluate Recall Evaluate F1 Evaluate Accuracy Sklearn Precision Sklearn Recall Sklearn F1 Sklearn Acuracia Rotulo Objeto Acuracia Rotulo Obrigacoes Acuracia Rotulo Valor Acuracia Rotulo Vigencia Acuracia Rotulo Rescisao Acuracia Rotulo Foro Acuracia Rotulo Reajuste Acuracia Rotulo Fiscalizacao Acuracia Rotulo Publicacao Acuracia Rotulo Pagamento Acuracia Rotulo Casos Omissos Acuracia Rotulo Sancoes Acuracia Rotulo Dotacao Orcamentaria
1.852 1.0 1000 1.5503 0.6855 0.7334 0.6913 0.6800 0.6855 0.7240 0.6855 0.6796 0.9587 0.6061 0.4842 0.6037 0.6925 0.9231 0.8221 0.2366 0.9015 0.8297 0.8325 0.7890 0.3077
0.875 2.0 2000 0.7078 0.88 0.8938 0.8952 0.8912 0.88 0.8879 0.88 0.8793 0.9628 0.7340 0.6991 0.9344 0.9224 0.9269 0.9466 0.8644 0.9655 0.8986 0.9064 0.8991 0.9780
0.4719 3.0 3000 0.3940 0.92 0.9267 0.9312 0.9277 0.92 0.9239 0.92 0.9202 0.9690 0.7997 0.8625 0.9685 0.9668 0.9385 0.9644 0.8738 0.9901 0.9239 0.9261 0.9450 0.9780
0.2712 4.0 4000 0.3128 0.9283 0.9349 0.9403 0.9364 0.9283 0.9319 0.9283 0.9285 0.9587 0.8047 0.9169 0.9764 0.9723 0.9385 0.9786 0.8738 1.0 0.9312 0.9310 0.9633 0.9780
0.159 5.0 5000 0.3166 0.9283 0.9368 0.9411 0.9374 0.9283 0.9330 0.9283 0.9285 0.9649 0.7896 0.9427 0.9764 0.9778 0.9385 0.9644 0.8770 1.0 0.9167 0.9360 0.9725 0.9780
0.1061 6.0 6000 0.2970 0.9307 0.9376 0.9444 0.9394 0.9307 0.9355 0.9307 0.9310 0.9649 0.7912 0.9284 0.9764 0.9778 0.9385 0.9858 0.8801 1.0 0.9384 0.9360 0.9817 0.9780
0.0936 7.0 7000 0.2725 0.9355 0.9433 0.9479 0.9445 0.9355 0.9381 0.9355 0.9353 0.9731 0.8098 0.9398 0.9764 0.9751 0.9385 0.9893 0.8801 1.0 0.9312 0.9409 0.9908 0.9780
0.0781 8.0 8000 0.2621 0.9383 0.9432 0.9514 0.9459 0.9383 0.9422 0.9383 0.9385 0.9731 0.8114 0.9284 0.9816 0.9695 0.9385 0.9858 0.8864 1.0 0.9746 0.9409 1.0 0.9780
0.0664 9.0 9000 0.2128 0.9553 0.9563 0.9621 0.9589 0.9553 0.9555 0.9553 0.9552 0.9711 0.9057 0.9312 0.9816 0.9640 0.9962 0.9893 0.8833 1.0 0.9746 0.9409 0.9908 0.9780
0.0616 10.0 10000 0.2505 0.948 0.9493 0.9590 0.9530 0.948 0.9507 0.948 0.9483 0.9752 0.8485 0.9513 0.9843 0.9695 0.95 0.9858 0.8864 1.0 0.9746 0.9409 1.0 1.0
0.0687 11.0 11000 0.1945 0.9663 0.9667 0.9681 0.9669 0.9663 0.9668 0.9663 0.9662 0.9793 0.9630 0.9456 0.9843 0.9751 0.9846 0.9964 0.8833 1.0 0.9638 0.9409 0.9908 0.9780
0.0532 12.0 12000 0.1884 0.965 0.9650 0.9696 0.9670 0.965 0.9652 0.965 0.9649 0.9876 0.9343 0.9513 0.9843 0.9751 0.9846 0.9893 0.8833 1.0 0.9746 0.9409 1.0 1.0
0.0658 13.0 13000 0.1943 0.963 0.9672 0.9667 0.9667 0.963 0.9634 0.963 0.9629 0.9876 0.9394 0.9542 0.9843 0.9668 0.9846 0.9893 0.8833 1.0 0.9457 0.9409 0.9908 1.0
0.0415 14.0 14000 0.1836 0.9698 0.9702 0.9721 0.9707 0.9698 0.9701 0.9698 0.9696 0.9876 0.9663 0.9513 0.9843 0.9751 0.9962 0.9822 0.8833 1.0 0.9746 0.9360 1.0 1.0
0.0414 15.0 15000 0.2002 0.9683 0.9679 0.9711 0.9689 0.9683 0.9688 0.9683 0.9681 0.9855 0.9697 0.9226 0.9843 0.9612 1.0 0.9964 0.8801 1.0 0.9891 0.9409 1.0 0.9945
0.0329 16.0 16000 0.1970 0.967 0.9683 0.9702 0.9687 0.967 0.9676 0.967 0.9669 0.9876 0.9680 0.9398 0.9816 0.9363 0.9962 0.9964 0.8801 1.0 0.9855 0.9409 1.0 1.0
0.0382 17.0 17000 0.1987 0.9695 0.9704 0.9718 0.9706 0.9695 0.9699 0.9695 0.9693 0.9855 0.9731 0.9370 0.9843 0.9695 0.9962 0.9929 0.8801 1.0 0.9746 0.9409 1.0 1.0
0.036 18.0 18000 0.1994 0.9673 0.9688 0.9704 0.9692 0.9673 0.9676 0.9673 0.9671 0.9917 0.9596 0.9312 0.9816 0.9695 0.9962 0.9751 0.8833 1.0 0.9855 0.9409 1.0 1.0
0.0399 19.0 19000 0.2332 0.9565 0.9636 0.9586 0.9602 0.9565 0.9589 0.9565 0.9567 0.9917 0.9495 0.9427 0.9816 0.9557 0.9962 0.8505 0.8864 1.0 0.9855 0.9409 0.9817 1.0
0.0307 20.0 20000 0.2063 0.9663 0.9710 0.9686 0.9694 0.9663 0.9669 0.9663 0.9662 0.9876 0.9663 0.9427 0.9816 0.9723 1.0 0.9751 0.8833 1.0 0.9420 0.9409 1.0 1.0
0.0256 21.0 21000 0.2059 0.9667 0.9712 0.9696 0.9700 0.9667 0.9675 0.9667 0.9667 0.9897 0.9596 0.9456 0.9816 0.9584 0.9962 0.9680 0.8833 1.0 0.9855 0.9458 0.9908 1.0
0.0231 22.0 22000 0.1974 0.9692 0.9707 0.9721 0.9709 0.9692 0.9698 0.9692 0.9691 0.9876 0.9663 0.9513 0.9843 0.9612 0.9962 0.9786 0.8801 1.0 0.9855 0.9458 1.0 1.0
0.0244 23.0 23000 0.2056 0.9677 0.9691 0.9707 0.9695 0.9677 0.9681 0.9677 0.9676 0.9855 0.9663 0.9284 0.9816 0.9751 0.9962 0.9786 0.8801 1.0 0.9819 0.9458 1.0 1.0
0.0296 24.0 24000 0.2062 0.9698 0.9702 0.9728 0.9712 0.9698 0.9701 0.9698 0.9697 0.9876 0.9596 0.9484 0.9816 0.9695 0.9962 0.9715 0.9085 1.0 0.9819 0.9409 1.0 1.0
0.0301 25.0 25000 0.2194 0.9673 0.9687 0.9703 0.9691 0.9673 0.9678 0.9673 0.9672 0.9835 0.9646 0.9456 0.9843 0.9584 0.9962 0.9715 0.8833 1.0 0.9855 0.9409 1.0 1.0
0.0189 26.0 26000 0.2081 0.9688 0.9687 0.9717 0.9697 0.9688 0.9693 0.9688 0.9687 0.9855 0.9630 0.9542 0.9816 0.9640 1.0 0.9786 0.8896 1.0 0.9746 0.9409 1.0 1.0
0.0186 27.0 27000 0.2231 0.962 0.9679 0.9641 0.9652 0.962 0.9638 0.962 0.9620 0.9917 0.9545 0.9570 0.9816 0.9861 0.9962 0.8577 0.8896 1.0 0.9783 0.9409 1.0 1.0
0.0201 28.0 28000 0.2071 0.9695 0.9725 0.9718 0.9719 0.9695 0.9699 0.9695 0.9694 0.9855 0.9646 0.9456 0.9843 0.9723 0.9962 0.9751 0.8927 1.0 0.9855 0.9409 0.9908 1.0
0.0202 29.0 29000 0.2120 0.9688 0.9700 0.9708 0.9701 0.9688 0.9690 0.9688 0.9687 0.9855 0.9646 0.9456 0.9843 0.9778 0.9846 0.9680 0.8927 1.0 0.9855 0.9409 0.9908 1.0
0.0201 30.0 30000 0.2111 0.9702 0.9734 0.9722 0.9725 0.9702 0.9706 0.9702 0.9701 0.9917 0.9630 0.9427 0.9843 0.9889 0.9962 0.9715 0.8833 1.0 0.9855 0.9409 0.9908 1.0
0.0181 31.0 31000 0.2263 0.9683 0.9685 0.9713 0.9695 0.9683 0.9688 0.9683 0.9682 0.9835 0.9646 0.9484 0.9843 0.9584 0.9962 0.9786 0.8864 1.0 0.9855 0.9409 1.0 1.0
0.0145 32.0 32000 0.2255 0.9645 0.9655 0.9658 0.9653 0.9645 0.9651 0.9645 0.9645 0.9814 0.9646 0.9542 0.9843 0.9668 0.9385 0.9715 0.8864 1.0 0.9855 0.9409 0.9817 1.0
0.0192 33.0 33000 0.2265 0.966 0.9675 0.9687 0.9676 0.966 0.9666 0.966 0.9659 0.9835 0.9663 0.9398 0.9790 0.9668 0.9962 0.9680 0.8801 1.0 0.9819 0.9310 1.0 1.0
0.0121 34.0 34000 0.2339 0.9685 0.9686 0.9714 0.9697 0.9685 0.9691 0.9685 0.9685 0.9835 0.9646 0.9456 0.9816 0.9584 0.9962 0.9644 0.9117 1.0 0.9819 0.9409 1.0 1.0
0.0179 35.0 35000 0.2327 0.9683 0.9685 0.9707 0.9693 0.9683 0.9687 0.9683 0.9682 0.9835 0.9646 0.9513 0.9816 0.9640 0.9846 0.9680 0.9054 1.0 0.9855 0.9310 1.0 1.0
0.0084 36.0 36000 0.2162 0.9688 0.9720 0.9705 0.9709 0.9688 0.9693 0.9688 0.9687 0.9897 0.9579 0.9570 0.9843 0.9778 0.9962 0.9786 0.8959 1.0 0.9565 0.9409 0.9817 1.0
0.0115 37.0 37000 0.2436 0.9645 0.9649 0.9668 0.9654 0.9645 0.9648 0.9645 0.9644 0.9835 0.9663 0.9370 0.9790 0.9695 0.9577 0.9751 0.8833 1.0 0.9855 0.9310 1.0 1.0
0.0146 38.0 38000 0.2464 0.9647 0.9684 0.9672 0.9673 0.9647 0.9656 0.9647 0.9647 0.9855 0.9646 0.9456 0.9816 0.9363 0.9962 0.9751 0.8801 1.0 0.9855 0.9409 0.9817 1.0
0.0112 39.0 39000 0.2432 0.9635 0.9637 0.9659 0.9644 0.9635 0.9641 0.9635 0.9635 0.9835 0.9646 0.9456 0.9816 0.9557 0.9423 0.9680 0.8927 1.0 0.9819 0.9409 1.0 1.0
0.011 40.0 40000 0.2498 0.9627 0.9627 0.9652 0.9636 0.9627 0.9634 0.9627 0.9627 0.9835 0.9630 0.9484 0.9816 0.9557 0.9385 0.9573 0.8927 1.0 0.9855 0.9409 1.0 1.0
0.0124 41.0 41000 0.2484 0.964 0.9640 0.9667 0.9649 0.964 0.9644 0.964 0.9639 0.9835 0.9646 0.9398 0.9790 0.9584 0.95 0.9751 0.8896 1.0 0.9855 0.9409 1.0 1.0
0.011 42.0 42000 0.2475 0.9645 0.9669 0.9666 0.9664 0.9645 0.9651 0.9645 0.9645 0.9855 0.9646 0.9484 0.9843 0.9474 0.9577 0.9680 0.8927 1.0 0.9855 0.9409 0.9908 1.0
0.0107 43.0 43000 0.2413 0.9645 0.9658 0.9664 0.9658 0.9645 0.9649 0.9645 0.9644 0.9855 0.9630 0.9456 0.9843 0.9612 0.9385 0.9751 0.8927 1.0 0.9855 0.9409 0.9908 1.0
0.0078 44.0 44000 0.2472 0.9637 0.9652 0.9664 0.9655 0.9637 0.9642 0.9637 0.9637 0.9855 0.9646 0.9398 0.9790 0.9529 0.95 0.9751 0.8896 1.0 0.9855 0.9409 1.0 1.0
0.0134 45.0 45000 0.2475 0.9635 0.9669 0.9654 0.9658 0.9635 0.9642 0.9635 0.9635 0.9855 0.9646 0.9456 0.9816 0.9529 0.9385 0.9715 0.8927 1.0 0.9855 0.9409 0.9908 1.0
0.0092 46.0 46000 0.2444 0.9643 0.9655 0.9666 0.9657 0.9643 0.9647 0.9643 0.9642 0.9855 0.9646 0.9398 0.9790 0.9640 0.9385 0.9751 0.8927 1.0 0.9855 0.9409 1.0 1.0
0.0083 47.0 47000 0.2452 0.9647 0.9660 0.9670 0.9661 0.9647 0.9652 0.9647 0.9647 0.9855 0.9646 0.9427 0.9843 0.9612 0.9385 0.9751 0.8927 1.0 0.9855 0.9409 1.0 1.0
0.008 48.0 48000 0.2429 0.9653 0.9650 0.9677 0.9660 0.9653 0.9656 0.9653 0.9652 0.9855 0.9646 0.9398 0.9816 0.9640 0.95 0.9751 0.8927 1.0 0.9855 0.9409 1.0 1.0
0.0078 49.0 49000 0.2429 0.9653 0.9652 0.9677 0.9661 0.9653 0.9655 0.9653 0.9652 0.9855 0.9646 0.9398 0.9816 0.9640 0.95 0.9751 0.8927 1.0 0.9855 0.9409 1.0 1.0
0.0086 50.0 50000 0.2435 0.9653 0.9654 0.9677 0.9662 0.9653 0.9656 0.9653 0.9652 0.9855 0.9646 0.9398 0.9816 0.9640 0.95 0.9751 0.8927 1.0 0.9855 0.9409 1.0 1.0

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for marcelovidigal/xlm-roberta-base-2-contract-sections-classification-v4-50

Finetuned
(2777)
this model