xlm-roberta-base-2-contract-sections-classification-v4-50
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2435
- Accuracy Evaluate: 0.9653
- Precision Evaluate: 0.9654
- Recall Evaluate: 0.9677
- F1 Evaluate: 0.9662
- Accuracy Sklearn: 0.9653
- Precision Sklearn: 0.9656
- Recall Sklearn: 0.9653
- F1 Sklearn: 0.9652
- Acuracia Rotulo Objeto: 0.9855
- Acuracia Rotulo Obrigacoes: 0.9646
- Acuracia Rotulo Valor: 0.9398
- Acuracia Rotulo Vigencia: 0.9816
- Acuracia Rotulo Rescisao: 0.9640
- Acuracia Rotulo Foro: 0.95
- Acuracia Rotulo Reajuste: 0.9751
- Acuracia Rotulo Fiscalizacao: 0.8927
- Acuracia Rotulo Publicacao: 1.0
- Acuracia Rotulo Pagamento: 0.9855
- Acuracia Rotulo Casos Omissos: 0.9409
- Acuracia Rotulo Sancoes: 1.0
- Acuracia Rotulo Dotacao Orcamentaria: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy Evaluate | Precision Evaluate | Recall Evaluate | F1 Evaluate | Accuracy Sklearn | Precision Sklearn | Recall Sklearn | F1 Sklearn | Acuracia Rotulo Objeto | Acuracia Rotulo Obrigacoes | Acuracia Rotulo Valor | Acuracia Rotulo Vigencia | Acuracia Rotulo Rescisao | Acuracia Rotulo Foro | Acuracia Rotulo Reajuste | Acuracia Rotulo Fiscalizacao | Acuracia Rotulo Publicacao | Acuracia Rotulo Pagamento | Acuracia Rotulo Casos Omissos | Acuracia Rotulo Sancoes | Acuracia Rotulo Dotacao Orcamentaria |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.852 | 1.0 | 1000 | 1.5503 | 0.6855 | 0.7334 | 0.6913 | 0.6800 | 0.6855 | 0.7240 | 0.6855 | 0.6796 | 0.9587 | 0.6061 | 0.4842 | 0.6037 | 0.6925 | 0.9231 | 0.8221 | 0.2366 | 0.9015 | 0.8297 | 0.8325 | 0.7890 | 0.3077 |
0.875 | 2.0 | 2000 | 0.7078 | 0.88 | 0.8938 | 0.8952 | 0.8912 | 0.88 | 0.8879 | 0.88 | 0.8793 | 0.9628 | 0.7340 | 0.6991 | 0.9344 | 0.9224 | 0.9269 | 0.9466 | 0.8644 | 0.9655 | 0.8986 | 0.9064 | 0.8991 | 0.9780 |
0.4719 | 3.0 | 3000 | 0.3940 | 0.92 | 0.9267 | 0.9312 | 0.9277 | 0.92 | 0.9239 | 0.92 | 0.9202 | 0.9690 | 0.7997 | 0.8625 | 0.9685 | 0.9668 | 0.9385 | 0.9644 | 0.8738 | 0.9901 | 0.9239 | 0.9261 | 0.9450 | 0.9780 |
0.2712 | 4.0 | 4000 | 0.3128 | 0.9283 | 0.9349 | 0.9403 | 0.9364 | 0.9283 | 0.9319 | 0.9283 | 0.9285 | 0.9587 | 0.8047 | 0.9169 | 0.9764 | 0.9723 | 0.9385 | 0.9786 | 0.8738 | 1.0 | 0.9312 | 0.9310 | 0.9633 | 0.9780 |
0.159 | 5.0 | 5000 | 0.3166 | 0.9283 | 0.9368 | 0.9411 | 0.9374 | 0.9283 | 0.9330 | 0.9283 | 0.9285 | 0.9649 | 0.7896 | 0.9427 | 0.9764 | 0.9778 | 0.9385 | 0.9644 | 0.8770 | 1.0 | 0.9167 | 0.9360 | 0.9725 | 0.9780 |
0.1061 | 6.0 | 6000 | 0.2970 | 0.9307 | 0.9376 | 0.9444 | 0.9394 | 0.9307 | 0.9355 | 0.9307 | 0.9310 | 0.9649 | 0.7912 | 0.9284 | 0.9764 | 0.9778 | 0.9385 | 0.9858 | 0.8801 | 1.0 | 0.9384 | 0.9360 | 0.9817 | 0.9780 |
0.0936 | 7.0 | 7000 | 0.2725 | 0.9355 | 0.9433 | 0.9479 | 0.9445 | 0.9355 | 0.9381 | 0.9355 | 0.9353 | 0.9731 | 0.8098 | 0.9398 | 0.9764 | 0.9751 | 0.9385 | 0.9893 | 0.8801 | 1.0 | 0.9312 | 0.9409 | 0.9908 | 0.9780 |
0.0781 | 8.0 | 8000 | 0.2621 | 0.9383 | 0.9432 | 0.9514 | 0.9459 | 0.9383 | 0.9422 | 0.9383 | 0.9385 | 0.9731 | 0.8114 | 0.9284 | 0.9816 | 0.9695 | 0.9385 | 0.9858 | 0.8864 | 1.0 | 0.9746 | 0.9409 | 1.0 | 0.9780 |
0.0664 | 9.0 | 9000 | 0.2128 | 0.9553 | 0.9563 | 0.9621 | 0.9589 | 0.9553 | 0.9555 | 0.9553 | 0.9552 | 0.9711 | 0.9057 | 0.9312 | 0.9816 | 0.9640 | 0.9962 | 0.9893 | 0.8833 | 1.0 | 0.9746 | 0.9409 | 0.9908 | 0.9780 |
0.0616 | 10.0 | 10000 | 0.2505 | 0.948 | 0.9493 | 0.9590 | 0.9530 | 0.948 | 0.9507 | 0.948 | 0.9483 | 0.9752 | 0.8485 | 0.9513 | 0.9843 | 0.9695 | 0.95 | 0.9858 | 0.8864 | 1.0 | 0.9746 | 0.9409 | 1.0 | 1.0 |
0.0687 | 11.0 | 11000 | 0.1945 | 0.9663 | 0.9667 | 0.9681 | 0.9669 | 0.9663 | 0.9668 | 0.9663 | 0.9662 | 0.9793 | 0.9630 | 0.9456 | 0.9843 | 0.9751 | 0.9846 | 0.9964 | 0.8833 | 1.0 | 0.9638 | 0.9409 | 0.9908 | 0.9780 |
0.0532 | 12.0 | 12000 | 0.1884 | 0.965 | 0.9650 | 0.9696 | 0.9670 | 0.965 | 0.9652 | 0.965 | 0.9649 | 0.9876 | 0.9343 | 0.9513 | 0.9843 | 0.9751 | 0.9846 | 0.9893 | 0.8833 | 1.0 | 0.9746 | 0.9409 | 1.0 | 1.0 |
0.0658 | 13.0 | 13000 | 0.1943 | 0.963 | 0.9672 | 0.9667 | 0.9667 | 0.963 | 0.9634 | 0.963 | 0.9629 | 0.9876 | 0.9394 | 0.9542 | 0.9843 | 0.9668 | 0.9846 | 0.9893 | 0.8833 | 1.0 | 0.9457 | 0.9409 | 0.9908 | 1.0 |
0.0415 | 14.0 | 14000 | 0.1836 | 0.9698 | 0.9702 | 0.9721 | 0.9707 | 0.9698 | 0.9701 | 0.9698 | 0.9696 | 0.9876 | 0.9663 | 0.9513 | 0.9843 | 0.9751 | 0.9962 | 0.9822 | 0.8833 | 1.0 | 0.9746 | 0.9360 | 1.0 | 1.0 |
0.0414 | 15.0 | 15000 | 0.2002 | 0.9683 | 0.9679 | 0.9711 | 0.9689 | 0.9683 | 0.9688 | 0.9683 | 0.9681 | 0.9855 | 0.9697 | 0.9226 | 0.9843 | 0.9612 | 1.0 | 0.9964 | 0.8801 | 1.0 | 0.9891 | 0.9409 | 1.0 | 0.9945 |
0.0329 | 16.0 | 16000 | 0.1970 | 0.967 | 0.9683 | 0.9702 | 0.9687 | 0.967 | 0.9676 | 0.967 | 0.9669 | 0.9876 | 0.9680 | 0.9398 | 0.9816 | 0.9363 | 0.9962 | 0.9964 | 0.8801 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0382 | 17.0 | 17000 | 0.1987 | 0.9695 | 0.9704 | 0.9718 | 0.9706 | 0.9695 | 0.9699 | 0.9695 | 0.9693 | 0.9855 | 0.9731 | 0.9370 | 0.9843 | 0.9695 | 0.9962 | 0.9929 | 0.8801 | 1.0 | 0.9746 | 0.9409 | 1.0 | 1.0 |
0.036 | 18.0 | 18000 | 0.1994 | 0.9673 | 0.9688 | 0.9704 | 0.9692 | 0.9673 | 0.9676 | 0.9673 | 0.9671 | 0.9917 | 0.9596 | 0.9312 | 0.9816 | 0.9695 | 0.9962 | 0.9751 | 0.8833 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0399 | 19.0 | 19000 | 0.2332 | 0.9565 | 0.9636 | 0.9586 | 0.9602 | 0.9565 | 0.9589 | 0.9565 | 0.9567 | 0.9917 | 0.9495 | 0.9427 | 0.9816 | 0.9557 | 0.9962 | 0.8505 | 0.8864 | 1.0 | 0.9855 | 0.9409 | 0.9817 | 1.0 |
0.0307 | 20.0 | 20000 | 0.2063 | 0.9663 | 0.9710 | 0.9686 | 0.9694 | 0.9663 | 0.9669 | 0.9663 | 0.9662 | 0.9876 | 0.9663 | 0.9427 | 0.9816 | 0.9723 | 1.0 | 0.9751 | 0.8833 | 1.0 | 0.9420 | 0.9409 | 1.0 | 1.0 |
0.0256 | 21.0 | 21000 | 0.2059 | 0.9667 | 0.9712 | 0.9696 | 0.9700 | 0.9667 | 0.9675 | 0.9667 | 0.9667 | 0.9897 | 0.9596 | 0.9456 | 0.9816 | 0.9584 | 0.9962 | 0.9680 | 0.8833 | 1.0 | 0.9855 | 0.9458 | 0.9908 | 1.0 |
0.0231 | 22.0 | 22000 | 0.1974 | 0.9692 | 0.9707 | 0.9721 | 0.9709 | 0.9692 | 0.9698 | 0.9692 | 0.9691 | 0.9876 | 0.9663 | 0.9513 | 0.9843 | 0.9612 | 0.9962 | 0.9786 | 0.8801 | 1.0 | 0.9855 | 0.9458 | 1.0 | 1.0 |
0.0244 | 23.0 | 23000 | 0.2056 | 0.9677 | 0.9691 | 0.9707 | 0.9695 | 0.9677 | 0.9681 | 0.9677 | 0.9676 | 0.9855 | 0.9663 | 0.9284 | 0.9816 | 0.9751 | 0.9962 | 0.9786 | 0.8801 | 1.0 | 0.9819 | 0.9458 | 1.0 | 1.0 |
0.0296 | 24.0 | 24000 | 0.2062 | 0.9698 | 0.9702 | 0.9728 | 0.9712 | 0.9698 | 0.9701 | 0.9698 | 0.9697 | 0.9876 | 0.9596 | 0.9484 | 0.9816 | 0.9695 | 0.9962 | 0.9715 | 0.9085 | 1.0 | 0.9819 | 0.9409 | 1.0 | 1.0 |
0.0301 | 25.0 | 25000 | 0.2194 | 0.9673 | 0.9687 | 0.9703 | 0.9691 | 0.9673 | 0.9678 | 0.9673 | 0.9672 | 0.9835 | 0.9646 | 0.9456 | 0.9843 | 0.9584 | 0.9962 | 0.9715 | 0.8833 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0189 | 26.0 | 26000 | 0.2081 | 0.9688 | 0.9687 | 0.9717 | 0.9697 | 0.9688 | 0.9693 | 0.9688 | 0.9687 | 0.9855 | 0.9630 | 0.9542 | 0.9816 | 0.9640 | 1.0 | 0.9786 | 0.8896 | 1.0 | 0.9746 | 0.9409 | 1.0 | 1.0 |
0.0186 | 27.0 | 27000 | 0.2231 | 0.962 | 0.9679 | 0.9641 | 0.9652 | 0.962 | 0.9638 | 0.962 | 0.9620 | 0.9917 | 0.9545 | 0.9570 | 0.9816 | 0.9861 | 0.9962 | 0.8577 | 0.8896 | 1.0 | 0.9783 | 0.9409 | 1.0 | 1.0 |
0.0201 | 28.0 | 28000 | 0.2071 | 0.9695 | 0.9725 | 0.9718 | 0.9719 | 0.9695 | 0.9699 | 0.9695 | 0.9694 | 0.9855 | 0.9646 | 0.9456 | 0.9843 | 0.9723 | 0.9962 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 0.9908 | 1.0 |
0.0202 | 29.0 | 29000 | 0.2120 | 0.9688 | 0.9700 | 0.9708 | 0.9701 | 0.9688 | 0.9690 | 0.9688 | 0.9687 | 0.9855 | 0.9646 | 0.9456 | 0.9843 | 0.9778 | 0.9846 | 0.9680 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 0.9908 | 1.0 |
0.0201 | 30.0 | 30000 | 0.2111 | 0.9702 | 0.9734 | 0.9722 | 0.9725 | 0.9702 | 0.9706 | 0.9702 | 0.9701 | 0.9917 | 0.9630 | 0.9427 | 0.9843 | 0.9889 | 0.9962 | 0.9715 | 0.8833 | 1.0 | 0.9855 | 0.9409 | 0.9908 | 1.0 |
0.0181 | 31.0 | 31000 | 0.2263 | 0.9683 | 0.9685 | 0.9713 | 0.9695 | 0.9683 | 0.9688 | 0.9683 | 0.9682 | 0.9835 | 0.9646 | 0.9484 | 0.9843 | 0.9584 | 0.9962 | 0.9786 | 0.8864 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0145 | 32.0 | 32000 | 0.2255 | 0.9645 | 0.9655 | 0.9658 | 0.9653 | 0.9645 | 0.9651 | 0.9645 | 0.9645 | 0.9814 | 0.9646 | 0.9542 | 0.9843 | 0.9668 | 0.9385 | 0.9715 | 0.8864 | 1.0 | 0.9855 | 0.9409 | 0.9817 | 1.0 |
0.0192 | 33.0 | 33000 | 0.2265 | 0.966 | 0.9675 | 0.9687 | 0.9676 | 0.966 | 0.9666 | 0.966 | 0.9659 | 0.9835 | 0.9663 | 0.9398 | 0.9790 | 0.9668 | 0.9962 | 0.9680 | 0.8801 | 1.0 | 0.9819 | 0.9310 | 1.0 | 1.0 |
0.0121 | 34.0 | 34000 | 0.2339 | 0.9685 | 0.9686 | 0.9714 | 0.9697 | 0.9685 | 0.9691 | 0.9685 | 0.9685 | 0.9835 | 0.9646 | 0.9456 | 0.9816 | 0.9584 | 0.9962 | 0.9644 | 0.9117 | 1.0 | 0.9819 | 0.9409 | 1.0 | 1.0 |
0.0179 | 35.0 | 35000 | 0.2327 | 0.9683 | 0.9685 | 0.9707 | 0.9693 | 0.9683 | 0.9687 | 0.9683 | 0.9682 | 0.9835 | 0.9646 | 0.9513 | 0.9816 | 0.9640 | 0.9846 | 0.9680 | 0.9054 | 1.0 | 0.9855 | 0.9310 | 1.0 | 1.0 |
0.0084 | 36.0 | 36000 | 0.2162 | 0.9688 | 0.9720 | 0.9705 | 0.9709 | 0.9688 | 0.9693 | 0.9688 | 0.9687 | 0.9897 | 0.9579 | 0.9570 | 0.9843 | 0.9778 | 0.9962 | 0.9786 | 0.8959 | 1.0 | 0.9565 | 0.9409 | 0.9817 | 1.0 |
0.0115 | 37.0 | 37000 | 0.2436 | 0.9645 | 0.9649 | 0.9668 | 0.9654 | 0.9645 | 0.9648 | 0.9645 | 0.9644 | 0.9835 | 0.9663 | 0.9370 | 0.9790 | 0.9695 | 0.9577 | 0.9751 | 0.8833 | 1.0 | 0.9855 | 0.9310 | 1.0 | 1.0 |
0.0146 | 38.0 | 38000 | 0.2464 | 0.9647 | 0.9684 | 0.9672 | 0.9673 | 0.9647 | 0.9656 | 0.9647 | 0.9647 | 0.9855 | 0.9646 | 0.9456 | 0.9816 | 0.9363 | 0.9962 | 0.9751 | 0.8801 | 1.0 | 0.9855 | 0.9409 | 0.9817 | 1.0 |
0.0112 | 39.0 | 39000 | 0.2432 | 0.9635 | 0.9637 | 0.9659 | 0.9644 | 0.9635 | 0.9641 | 0.9635 | 0.9635 | 0.9835 | 0.9646 | 0.9456 | 0.9816 | 0.9557 | 0.9423 | 0.9680 | 0.8927 | 1.0 | 0.9819 | 0.9409 | 1.0 | 1.0 |
0.011 | 40.0 | 40000 | 0.2498 | 0.9627 | 0.9627 | 0.9652 | 0.9636 | 0.9627 | 0.9634 | 0.9627 | 0.9627 | 0.9835 | 0.9630 | 0.9484 | 0.9816 | 0.9557 | 0.9385 | 0.9573 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0124 | 41.0 | 41000 | 0.2484 | 0.964 | 0.9640 | 0.9667 | 0.9649 | 0.964 | 0.9644 | 0.964 | 0.9639 | 0.9835 | 0.9646 | 0.9398 | 0.9790 | 0.9584 | 0.95 | 0.9751 | 0.8896 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.011 | 42.0 | 42000 | 0.2475 | 0.9645 | 0.9669 | 0.9666 | 0.9664 | 0.9645 | 0.9651 | 0.9645 | 0.9645 | 0.9855 | 0.9646 | 0.9484 | 0.9843 | 0.9474 | 0.9577 | 0.9680 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 0.9908 | 1.0 |
0.0107 | 43.0 | 43000 | 0.2413 | 0.9645 | 0.9658 | 0.9664 | 0.9658 | 0.9645 | 0.9649 | 0.9645 | 0.9644 | 0.9855 | 0.9630 | 0.9456 | 0.9843 | 0.9612 | 0.9385 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 0.9908 | 1.0 |
0.0078 | 44.0 | 44000 | 0.2472 | 0.9637 | 0.9652 | 0.9664 | 0.9655 | 0.9637 | 0.9642 | 0.9637 | 0.9637 | 0.9855 | 0.9646 | 0.9398 | 0.9790 | 0.9529 | 0.95 | 0.9751 | 0.8896 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0134 | 45.0 | 45000 | 0.2475 | 0.9635 | 0.9669 | 0.9654 | 0.9658 | 0.9635 | 0.9642 | 0.9635 | 0.9635 | 0.9855 | 0.9646 | 0.9456 | 0.9816 | 0.9529 | 0.9385 | 0.9715 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 0.9908 | 1.0 |
0.0092 | 46.0 | 46000 | 0.2444 | 0.9643 | 0.9655 | 0.9666 | 0.9657 | 0.9643 | 0.9647 | 0.9643 | 0.9642 | 0.9855 | 0.9646 | 0.9398 | 0.9790 | 0.9640 | 0.9385 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0083 | 47.0 | 47000 | 0.2452 | 0.9647 | 0.9660 | 0.9670 | 0.9661 | 0.9647 | 0.9652 | 0.9647 | 0.9647 | 0.9855 | 0.9646 | 0.9427 | 0.9843 | 0.9612 | 0.9385 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.008 | 48.0 | 48000 | 0.2429 | 0.9653 | 0.9650 | 0.9677 | 0.9660 | 0.9653 | 0.9656 | 0.9653 | 0.9652 | 0.9855 | 0.9646 | 0.9398 | 0.9816 | 0.9640 | 0.95 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0078 | 49.0 | 49000 | 0.2429 | 0.9653 | 0.9652 | 0.9677 | 0.9661 | 0.9653 | 0.9655 | 0.9653 | 0.9652 | 0.9855 | 0.9646 | 0.9398 | 0.9816 | 0.9640 | 0.95 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
0.0086 | 50.0 | 50000 | 0.2435 | 0.9653 | 0.9654 | 0.9677 | 0.9662 | 0.9653 | 0.9656 | 0.9653 | 0.9652 | 0.9855 | 0.9646 | 0.9398 | 0.9816 | 0.9640 | 0.95 | 0.9751 | 0.8927 | 1.0 | 0.9855 | 0.9409 | 1.0 | 1.0 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for marcelovidigal/xlm-roberta-base-2-contract-sections-classification-v4-50
Base model
FacebookAI/xlm-roberta-base