🎤 whisper-base-onnx-web-v7
Fine-tuned Whisper model for Swedish transcription, optimized for web deployment with Transformers.js.
📋 Model Details
- Base Model: openai/whisper-base
- Language: Swedish (sv)
- Task: Speech Recognition / Transcription
- Training Steps: N/A
- License: MIT
🚀 Usage with Transformers.js
This model is optimized for browser-based transcription using Transformers.js:
import { pipeline } from '@xenova/transformers';
// Load the model
const transcriber = await pipeline(
'automatic-speech-recognition',
'markusingvarsson/whisper-base-onnx-web-v7'
);
// Transcribe audio
const result = await transcriber(audioFile, {
language: 'sv',
task: 'transcribe',
chunk_length_s: 30,
stride_length_s: 5
});
console.log(result.text);
🐍 Usage with Python
from transformers import pipeline
# Load pipeline
transcriber = pipeline(
"automatic-speech-recognition",
model="markusingvarsson/whisper-base-onnx-web-v7",
device=0 # Use GPU if available
)
# Transcribe
result = transcriber(
"audio.wav",
generate_kwargs={"language": "sv", "task": "transcribe"}
)
print(result["text"])
📊 Performance
- Word Error Rate (WER): N/A%
- Model Size (ONNX): ~95MB (quantized)
- Inference Speed: 1-2x realtime on modern hardware
🎯 Intended Use
This model is designed for:
- Voice note transcription
- Meeting transcription
- Swedish podcast transcription
- Real-time speech-to-text in web browsers
- Accessibility applications
🔧 Training Details
- Hardware: GPU/CPU
- Batch Size: 8
- Learning Rate: 1e-5
- Training Loss: N/A
📁 Model Files
*.onnx
: ONNX model files for web deploymentconfig.json
: Model configurationtokenizer.json
: Fast tokenizer for Transformers.jsprocessor_config.json
: Audio processing configuration
🌐 Demo
Try the model in your browser: [Coming Soon]
📝 Limitations
- Optimized for Swedish language only
- Best performance with clear audio (minimal background noise)
- May struggle with heavy dialects or very fast speech
- Maximum audio length: 30 seconds per chunk
🤝 Citation
If you use this model, please cite:
@misc{whisper_base_onnx_web_v7_2024,
title={whisper-base-onnx-web-v7: Swedish Whisper for Web},
author={markusingvarsson},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/markusingvarsson/whisper-base-onnx-web-v7}
}
🙏 Acknowledgments
- OpenAI for the original Whisper model
- Hugging Face for the tools and platform
- The Swedish NLP community
📄 License
This model is released under the MIT License.
- Downloads last month
- 10
Dataset used to train markusingvarsson/whisper-base-onnx-web-v7
Evaluation results
- Word Error Rate on Common Voice Swedishself-reportedN/A