metadata
library_name: mlx
license: other
license_name: nvidia-open-model-license
license_link: >-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
pipeline_tag: text-generation
language:
- en
tags:
- nvidia
- llama-3
- pytorch
- mlx
base_model: nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
datasets:
- nvidia/Llama-Nemotron-Post-Training-Dataset
mlx-community/Llama-3.1-Nemotron-Nano-4B-v1.1-8bit
This model mlx-community/Llama-3.1-Nemotron-Nano-4B-v1.1-8bit was converted to MLX format from nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1 using mlx-lm version 0.25.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama-3.1-Nemotron-Nano-4B-v1.1-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)