metadata
language:
- en
- ja
library_name: mlx
pipeline_tag: text-generation
license:
- llama3.3
- gemma
model_type: llama
datasets:
- tokyotech-llm/lmsys-chat-1m-synth
- lmsys/lmsys-chat-1m
base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5
tags:
- mlx
mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit
This model mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit was converted to MLX format from tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5 using mlx-lm version 0.25.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama-3.1-Swallow-8B-Instruct-v0.5-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)