metadata
library_name: mlx
license: gemma
widget:
- messages:
- role: user
content: How does the brain work?
inference:
parameters:
max_new_tokens: 200
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
To access Gemma on Hugging Face, you’re required to review and agree to
Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
base_model: google/gemma-1.1-2b-it
tags:
- mlx
pipeline_tag: text-generation
mlx-community/gemma-1.1-2b-it-bf16
This model mlx-community/gemma-1.1-2b-it-bf16 was converted to MLX format from google/gemma-1.1-2b-it using mlx-lm version 0.26.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/gemma-1.1-2b-it-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)