vit-base-patch16-224-in21k-bridgedefectVIT

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1799
  • Accuracy: {'accuracy': 0.9705510388437217}
  • F1: {'f1': 0.9705092081728205}
  • Precision: {'precision': 0.9710523804561741}
  • Recall: {'recall': 0.9704181656558507}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.37 1.0 8302 0.3462 {'accuracy': 0.8933453778982234} {'f1': 0.8942100052466936} {'precision': 0.8984250247518094} {'recall': 0.8931370564158605}
0.2375 2.0 16605 0.3353 {'accuracy': 0.9053297199638664} {'f1': 0.9062005892826234} {'precision': 0.912717242831991} {'recall': 0.9052684275828231}
0.5678 3.0 24907 0.3114 {'accuracy': 0.9118940078289671} {'f1': 0.9116597109413729} {'precision': 0.9165908158739848} {'recall': 0.9116030141797212}
0.09 4.0 33210 0.2768 {'accuracy': 0.9270099367660344} {'f1': 0.9272025877193879} {'precision': 0.9305221603080029} {'recall': 0.9267551810236085}
0.266 5.0 41512 0.2595 {'accuracy': 0.9312857573020175} {'f1': 0.9313123811138734} {'precision': 0.9327488749607135} {'recall': 0.931043574955592}
0.2037 6.0 49815 0.2123 {'accuracy': 0.9431496537187594} {'f1': 0.9428749572352995} {'precision': 0.9435965528419799} {'recall': 0.9429052318485974}
0.1487 7.0 58117 0.2282 {'accuracy': 0.9430292080698585} {'f1': 0.9430188942480495} {'precision': 0.9444609819488103} {'recall': 0.9428880066548226}
0.1405 8.0 66420 0.2440 {'accuracy': 0.9454381210478772} {'f1': 0.9455191951029847} {'precision': 0.9467893516678145} {'recall': 0.9453224042508239}
0.09 9.0 74722 0.2480 {'accuracy': 0.9436314363143632} {'f1': 0.9433683232067358} {'precision': 0.9452971145459653} {'recall': 0.9433746555197686}
0.2275 10.0 83025 0.2473 {'accuracy': 0.946582354712436} {'f1': 0.9462472081330006} {'precision': 0.9479482237973264} {'recall': 0.9463251646491099}
0.0114 11.0 91327 0.1953 {'accuracy': 0.9551942186088528} {'f1': 0.954959353992539} {'precision': 0.9555671952457011} {'recall': 0.9550120730050532}
0.0778 12.0 99630 0.2246 {'accuracy': 0.948509485094851} {'f1': 0.9485863094568601} {'precision': 0.9496017185087666} {'recall': 0.9484435235390778}
0.1031 13.0 107932 0.2435 {'accuracy': 0.9443541102077687} {'f1': 0.9443461050911817} {'precision': 0.9453218450441414} {'recall': 0.9442028500529185}
0.1419 14.0 116235 0.1751 {'accuracy': 0.9580849141824752} {'f1': 0.9580811670883926} {'precision': 0.9586631550970829} {'recall': 0.9580178560027687}
0.0993 15.0 124537 0.2099 {'accuracy': 0.9542908762420957} {'f1': 0.9541061721417268} {'precision': 0.9541191566948424} {'recall': 0.9541611121516007}
0.0696 16.0 132840 0.2240 {'accuracy': 0.955736224028907} {'f1': 0.9555782982813351} {'precision': 0.9563626555520048} {'recall': 0.9555607789866469}
0.1697 17.0 141142 0.1904 {'accuracy': 0.9579644685335742} {'f1': 0.9577653922157884} {'precision': 0.9581933285912818} {'recall': 0.9578259452834421}
0.0429 18.0 149445 0.2102 {'accuracy': 0.9558566696778079} {'f1': 0.955829019244906} {'precision': 0.9570787144559411} {'recall': 0.955662074541215}
0.0062 19.0 157747 0.1768 {'accuracy': 0.9601927130382415} {'f1': 0.9601350969183112} {'precision': 0.9605649770988711} {'recall': 0.960090994011799}
0.005 20.0 166050 0.1779 {'accuracy': 0.9624209575429088} {'f1': 0.9622479573311764} {'precision': 0.9626782993390144} {'recall': 0.9622658509657924}
0.1395 21.0 174352 0.1801 {'accuracy': 0.961035832580548} {'f1': 0.9609739947935761} {'precision': 0.9615134912739316} {'recall': 0.9609000684385473}
0.0966 22.0 182655 0.1854 {'accuracy': 0.9594098163203855} {'f1': 0.959384693086552} {'precision': 0.9602665108685822} {'recall': 0.9592591268355116}
0.0077 23.0 190957 0.2190 {'accuracy': 0.9573020174646191} {'f1': 0.9572877808970253} {'precision': 0.9580176848865115} {'recall': 0.9571782999468976}
0.1032 24.0 199260 0.2281 {'accuracy': 0.9570009033423668} {'f1': 0.9568818981129438} {'precision': 0.9577859752909083} {'recall': 0.95679636210611}
0.1106 25.0 207562 0.2017 {'accuracy': 0.9615778380006023} {'f1': 0.9615258017857322} {'precision': 0.9623198062794668} {'recall': 0.9614196936259853}
0.0833 26.0 215865 0.2074 {'accuracy': 0.9618789521228546} {'f1': 0.9618001985746503} {'precision': 0.9625802607483476} {'recall': 0.9617264541173526}
0.0257 27.0 224167 0.1716 {'accuracy': 0.9648900933453779} {'f1': 0.9648046336171575} {'precision': 0.9653533590655595} {'recall': 0.9648070647916974}
0.002 28.0 232470 0.2144 {'accuracy': 0.9635049683830171} {'f1': 0.9634863498105041} {'precision': 0.9646616314066687} {'recall': 0.9633283402670114}
0.016 29.0 240772 0.2237 {'accuracy': 0.959349593495935} {'f1': 0.9594342688149864} {'precision': 0.9608554784443832} {'recall': 0.9591930193477335}
0.0575 30.0 249075 0.1847 {'accuracy': 0.9651912074676302} {'f1': 0.9652324025756626} {'precision': 0.9661899074568192} {'recall': 0.9650558808909672}
0.0997 31.0 257377 0.1798 {'accuracy': 0.9686841312857573} {'f1': 0.9686428828918746} {'precision': 0.9691104091550086} {'recall': 0.9685623791125}
0.0017 32.0 265680 0.1985 {'accuracy': 0.9627822944896116} {'f1': 0.9626870784433683} {'precision': 0.963172343077798} {'recall': 0.962659195203449}
0.0538 33.0 273982 0.1605 {'accuracy': 0.9710328214393255} {'f1': 0.9710267090566379} {'precision': 0.9715030346291925} {'recall': 0.9709339306149106}
0.0023 34.0 282285 0.1832 {'accuracy': 0.9674194519722975} {'f1': 0.9673811237591747} {'precision': 0.9679330625290327} {'recall': 0.9672934059576415}
0.0459 35.0 290587 0.1877 {'accuracy': 0.9657332128876844} {'f1': 0.965749942670487} {'precision': 0.9664774134203846} {'recall': 0.9656335047526519}
0.0193 36.0 298890 0.1633 {'accuracy': 0.9677205660945498} {'f1': 0.9677329659674949} {'precision': 0.9684419822552822} {'recall': 0.9675975315398574}
0.0707 37.0 307192 0.1787 {'accuracy': 0.9685636856368564} {'f1': 0.9684895304986225} {'precision': 0.9689001010469502} {'recall': 0.9684451099576021}
0.0985 38.0 315495 0.2076 {'accuracy': 0.9629629629629629} {'f1': 0.9630524772042474} {'precision': 0.9642571257654206} {'recall': 0.9628345133405821}
0.0788 39.0 323797 0.1794 {'accuracy': 0.9702499247214694} {'f1': 0.9701536210820301} {'precision': 0.9706833500680011} {'recall': 0.9700913059580385}
0.0008 40.0 332100 0.1618 {'accuracy': 0.9733212887684433} {'f1': 0.9732738808256685} {'precision': 0.9736678524998652} {'recall': 0.9731998786471756}
0.074 41.0 340402 0.1991 {'accuracy': 0.9668172237277929} {'f1': 0.9666853676025186} {'precision': 0.9673504006462602} {'recall': 0.9666339730453138}
0.028 42.0 348705 0.1556 {'accuracy': 0.9742246311352002} {'f1': 0.9741506224327396} {'precision': 0.9743929114728255} {'recall': 0.9741060958660924}
0.1092 43.0 357007 0.1567 {'accuracy': 0.9740439626618489} {'f1': 0.9739721593463402} {'precision': 0.9742787951493688} {'recall': 0.9739217266482031}
0.0008 44.0 365310 0.1697 {'accuracy': 0.9707919301415237} {'f1': 0.9707068184898958} {'precision': 0.9712158191257935} {'recall': 0.9706396165347172}
0.1728 45.0 373612 0.1791 {'accuracy': 0.9701294790725685} {'f1': 0.9700180755443455} {'precision': 0.9704271475318083} {'recall': 0.9699790872810246}
0.0004 46.0 381915 0.2024 {'accuracy': 0.9672387834989461} {'f1': 0.9672031338307139} {'precision': 0.9680962843155184} {'recall': 0.9670672659468575}
0.0044 47.0 390217 0.1708 {'accuracy': 0.9721168322794339} {'f1': 0.9720140881144397} {'precision': 0.9723799188733908} {'recall': 0.9719693947081535}
0.089 48.0 398520 0.1975 {'accuracy': 0.9686841312857573} {'f1': 0.9686510789801565} {'precision': 0.969349692339074} {'recall': 0.9685439142771983}
0.0774 49.0 406822 0.1778 {'accuracy': 0.9709123757904246} {'f1': 0.9708794409655027} {'precision': 0.9714408230271825} {'recall': 0.9707829629677185}
0.0012 50.0 415100 0.1799 {'accuracy': 0.9705510388437217} {'f1': 0.9705092081728205} {'precision': 0.9710523804561741} {'recall': 0.9704181656558507}

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
8
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for mmomm25/vit-base-patch16-224-in21k-bridgedefectVIT

Finetuned
(1920)
this model

Evaluation results