|
--- |
|
library_name: peft |
|
license: apache-2.0 |
|
--- |
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Framework versions |
|
|
|
|
|
- PEFT 0.5.0 |
|
|
|
- --- |
|
library_name: peft |
|
tags: |
|
- code |
|
- instruct |
|
- gpt2 |
|
datasets: |
|
- HuggingFaceH4/no_robots |
|
base_model: gpt2 |
|
license: apache-2.0 |
|
--- |
|
|
|
### Finetuning Overview: |
|
|
|
**Model Used:** gpt2 |
|
|
|
**Dataset:** HuggingFaceH4/no_robots |
|
|
|
#### Dataset Insights: |
|
|
|
[No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. |
|
|
|
#### Finetuning Details: |
|
|
|
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning: |
|
|
|
- Was achieved with great cost-effectiveness. |
|
- Completed in a total duration of 3mins 40s for 1 epoch using an A6000 48GB GPU. |
|
- Costed `$0.101` for the entire epoch. |
|
|
|
#### Hyperparameters & Additional Details: |
|
|
|
- **Epochs:** 1 |
|
- **Cost Per Epoch:** $0.101 |
|
- **Total Finetuning Cost:** $0.101 |
|
- **Model Path:** gpt2 |
|
- **Learning Rate:** 0.0002 |
|
- **Data Split:** 100% train |
|
- **Gradient Accumulation Steps:** 4 |
|
- **lora r:** 32 |
|
- **lora alpha:** 64 |
|
|
|
#### Prompt Structure |
|
``` |
|
<|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|> |
|
``` |
|
#### Training loss : |
|
|
|
 |
|
|
|
license: apache-2.0 |