Uzbek NER model
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the Uzbek Ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.1761
- Precision: 0.5870
- Recall: 0.6354
- F1: 0.6102
- Accuracy: 0.9386
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.08
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2571 | 0.4662 | 100 | 0.2272 | 0.4924 | 0.5096 | 0.5008 | 0.9291 |
0.2035 | 0.9324 | 200 | 0.1931 | 0.5411 | 0.5962 | 0.5673 | 0.9339 |
0.1787 | 1.3963 | 300 | 0.1846 | 0.5693 | 0.6327 | 0.5993 | 0.9358 |
0.1788 | 1.8625 | 400 | 0.1776 | 0.5741 | 0.6259 | 0.5989 | 0.9383 |
0.176 | 2.3263 | 500 | 0.1759 | 0.5902 | 0.6231 | 0.6062 | 0.9390 |
0.1676 | 2.7925 | 600 | 0.1761 | 0.5868 | 0.6351 | 0.6100 | 0.9386 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for mustafoyev202/roberta-uz
Base model
FacebookAI/xlm-roberta-large