license: cc-by-nc-4.0 | |
datasets: | |
- Salesforce/APIGen-MT-5k | |
- Salesforce/xlam-function-calling-60k | |
language: | |
- en | |
pipeline_tag: text-generation | |
tags: | |
- function-calling | |
- LLM Agent | |
- tool-use | |
- llama | |
- qwen | |
- pytorch | |
- LLaMA-factory | |
- mlx | |
- mlx-my-repo | |
library_name: transformers | |
base_model: Salesforce/xLAM-2-32b-fc-r | |
# mxmcc/xLAM-2-32b-fc-r-mlx-6Bit | |
The Model [mxmcc/xLAM-2-32b-fc-r-mlx-6Bit](https://huggingface.co/mxmcc/xLAM-2-32b-fc-r-mlx-6Bit) was converted to MLX format from [Salesforce/xLAM-2-32b-fc-r](https://huggingface.co/Salesforce/xLAM-2-32b-fc-r) using mlx-lm version **0.22.3**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("mxmcc/xLAM-2-32b-fc-r-mlx-6Bit") | |
prompt="hello" | |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
messages = [{"role": "user", "content": prompt}] | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |