EfficientNet-B0 Model for Image Classification
This repository contains an EfficientNet-B0 model trained on a custom dataset for image classification tasks.
Model Details
- Architecture: EfficientNet-B0
- Input Size: 224x224 RGB images
- Number of Classes: 10
- Dataset: Custom dataset with 10 categories
- Optimizer: AdamW
- Loss Function: CrossEntropyLoss
- Validation Accuracy: 85.3%
- Device Used for Training: CUDA (GPU)
Usage
Load the Model To load the model, use the following code:
import torch
Load model and metadata
model = torch.load("efficientnet-results-and-model.pth", map_location="cpu")
Access class-to-index mapping
class_to_idx = model['class_to_idx']
Load the state dictionary
state_dict = model['model_state_dict']
Reconstruct EfficientNet-B0
from torchvision.models import efficientnet_b0
model = efficientnet_b0(weights=None)
model.classifier[1] = torch.nn.Linear(model.classifier[1].in_features, len(class_to_idx))
model.load_state_dict(state_dict)
model.eval()
print("Model successfully loaded!")
Training Details
Learning Rate: 0.001
Batch Size: 32
Epochs: 3
Augmentations:
Random Resized Crop
Horizontal Flip
Color Jitter
Normalization (mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225])
Files in this Repository
best_model.pth: Trained model weights
efficientnet.json: Model configuration file
README.md: Documentation for this model
efficientnet.txt: Training Results
Acknowledgments
Framework: PyTorch
Pretrained Weights: TorchVision
Training: Mixed precision using torch.cuda.amp for efficient training on GPU.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for nailarais1/image-classifier-efficientnet
Base model
google/efficientnet-b0