|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-cnn-finetuned-scope-summarization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-cnn-finetuned-scope-summarization |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1120 |
|
- Rouge1: 51.232 |
|
- Rouge2: 37.3103 |
|
- Rougel: 39.2783 |
|
- Rougelsum: 39.2011 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.6379 | 1.0 | 40 | 0.2289 | 45.9991 | 29.5151 | 34.3864 | 34.3984 | |
|
| 0.2731 | 2.0 | 80 | 0.1935 | 47.3991 | 33.1933 | 38.1538 | 38.0514 | |
|
| 0.2362 | 3.0 | 120 | 0.1734 | 47.4125 | 32.2496 | 35.7852 | 35.8279 | |
|
| 0.222 | 4.0 | 160 | 0.1665 | 46.2226 | 32.0249 | 37.016 | 36.8941 | |
|
| 0.2005 | 5.0 | 200 | 0.1530 | 50.1647 | 35.1015 | 39.0526 | 39.0721 | |
|
| 0.1971 | 6.0 | 240 | 0.1434 | 49.7914 | 35.5371 | 39.2372 | 39.244 | |
|
| 0.1754 | 7.0 | 280 | 0.1286 | 49.8482 | 35.7536 | 40.2412 | 40.2248 | |
|
| 0.1777 | 8.0 | 320 | 0.1187 | 51.6342 | 38.223 | 41.4109 | 41.3626 | |
|
| 0.1555 | 9.0 | 360 | 0.1149 | 49.1858 | 36.1404 | 38.857 | 38.7268 | |
|
| 0.1415 | 10.0 | 400 | 0.1120 | 51.232 | 37.3103 | 39.2783 | 39.2011 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|