DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8

Model Overview

  • Model Architecture: Qwen2ForCausalLM
    • Input: Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT8
    • Activation quantization: INT8
  • Release Date: 2/4/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of DeepSeek-R1-Distill-Qwen-14B.

Model Optimizations

This model was obtained by quantizing the weights and activations of DeepSeek-R1-Distill-Qwen-14B to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.

Only the weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

number_gpus = 1
model_name = "neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8"

tokenizer = AutoTokenizer.from_pretrained(model_name)
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)

messages_list = [
    [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below.

from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot

# Load model
model_stub = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
model_name = model_stub.split("/")[-1]

num_samples = 1024
max_seq_len = 8192

tokenizer = AutoTokenizer.from_pretrained(model_stub)

model = AutoModelForCausalLM.from_pretrained(
    model_stub,
    device_map="auto",
    torch_dtype="auto",
)

def preprocess_fn(example):
  return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}

ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)

# Configure the quantization algorithm and scheme
recipe = [
    SmoothQuantModifier(smoothing_strength=0.8),
    QuantizationModifier(
        targets="Linear",
        scheme="W8A8",
        ignore=["lm_head"],
        dampening_frac=0.1,
    ),
]

# Apply quantization
oneshot(
    model=model,
    dataset=ds, 
    recipe=recipe,
    max_seq_length=max_seq_len,
    num_calibration_samples=num_samples,
)

# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w8a8
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")

Evaluation

The model was evaluated on OpenLLM Leaderboard V1 and V2, using the following commands:

OpenLLM Leaderboard V1:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
  --tasks openllm \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

OpenLLM Leaderboard V2:

lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks leaderboard \
  --write_out \
  --batch_size auto \
  --output_path output_dir \
  --show_config

Accuracy

Category Metric deepseek-ai/DeepSeek-R1-Distill-Qwen-14B neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8 Recovery
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 58.79 57.85 98.4%
GSM8K (Strict-Match, 5-shot) 87.04 87.79 100.9%
HellaSwag (Acc-Norm, 10-shot) 81.51 81.04 99.4%
MMLU (Acc, 5-shot) 74.46 74.26 99.7%
TruthfulQA (MC2, 0-shot) 54.77 54.94 100.3%
Winogrande (Acc, 5-shot) 69.38 70.48 101.6%
Average Score 70.99 71.06 100.1%
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 43.05 42.78 99.4%
BBH (Acc-Norm, 3-shot) 47.16 47.53 100.8%
Math-Hard (Exact-Match, 4-shot) 0.00 0.00 ---
GPQA (Acc-Norm, 0-shot) 35.07 37.22 106.2%
MUSR (Acc-Norm, 0-shot) 45.14 43.56 96.5%
MMLU-Pro (Acc, 5-shot) 34.86 33.63 96.5%
Average Score 34.21 34.12 99.7%
Coding HumanEval (pass@1) 78.90 78.40 99.4%
HumanEval (pass@10) 89.80 90.10 100.3%
HumanEval+ (pass@10) 72.60 72.40 99.7%
HumanEval+ (pass@10) 84.90 84.90 100.0%

Inference Performance

This model achieves up to 1.6x speedup in both single-stream and multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.

Benchmarking Command
guidellm --model neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server

Single-stream performance (measured with vLLM version 0.7.2)

Instruction Following
256 / 128
Multi-turn Chat
512 / 256
Docstring Generation
768 / 128
RAG
1024 / 128
Code Completion
256 / 1024
Code Fixing
1024 / 1024
Large Summarization
4096 / 512
Large RAG
10240 / 1536
Hardware Model Average cost reduction Latency (s) QPD Latency (s) QPD Latency (s) QPD Latency (s) QPD Latency (s) QPD Latency (s) QPD Latency (s) QPD Latency (s) QPD
A6000x1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- 5.4 837 10.7 419 5.5 813 5.6 805 42.2 107 42.8 105 22.9 197 71.7 63
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8 1.59 3.3 1345 6.7 673 3.4 1315 3.5 1296 26.5 170 26.8 168 14.5 310 48.3 93
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 2.51 2.0 2275 4.0 1127 2.2 2072 2.3 1945 15.3 294 15.9 283 9.9 456 36.6 123
A100x1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- 2.6 765 5.2 383 2.7 746 2.7 732 20.8 97 21.2 95 11.3 179 36.7 55
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8 1.34 1.9 1072 3.8 533 1.9 1045 1.9 1032 14.8 136 15.2 132 8.1 248 39.6 51
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 1.93 1.2 1627 2.5 810 1.3 1530 1.4 1474 9.7 208 10.2 197 5.8 348 37.6 53
H100x1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- 1.6 672 3.3 334 1.7 662 1.7 652 12.8 85 13.0 84 7.0 155 25.2 43
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic 1.33 1.2 925 2.3 467 1.2 908 1.2 896 9.3 118 9.5 115 5.2 210 23.9 46
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 1.37 1.2 944 2.3 474 1.2 931 1.2 907 9.1 121 9.2 119 5.1 214 22.5 49

**Use case profiles: prompt tokens / generation tokens

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Multi-stream asynchronous performance (measured with vLLM version 0.7.2)

Instruction Following
256 / 128
Multi-turn Chat
512 / 256
Docstring Generation
768 / 128
RAG
1024 / 128
Code Completion
256 / 1024
Code Fixing
1024 / 1024
Large Summarization
4096 / 512
Large RAG
10240 / 1536
Hardware Model Average cost reduction Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD
A6000x1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- 13.7 30785 5.5 12327 6.5 14517 5.1 11439 2.0 4434 1.3 2982 0.6 1462 0.2 371
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8 1.44 21.4 48181 8.2 18421 9.8 22051 7.8 17462 2.8 6281 1.7 3758 1.0 2335 0.2 419
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 0.98 12.7 28540 5.7 12796 5.4 12218 3.7 8401 2.5 5583 1.3 2987 0.7 1489 0.2 368
A100x1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- 15.6 31306 7.1 14192 7.7 15435 6.0 11971 2.4 4878 1.6 3298 0.9 1862 0.2 355
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8 1.31 20.8 41907 9.3 18724 10.5 21043 8.4 16886 3.0 5975 1.9 3917 1.2 2481 0.2 464
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 0.94 14.0 28146 6.5 13042 6.5 12987 5.1 10194 2.6 5269 1.5 2925 0.9 1849 0.2 382
H100x1 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B --- 31.4 34404 14.1 15482 16.6 18149 13.3 14572 4.7 5099 2.6 2849 1.9 2060 0.3 347
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic 1.31 40.9 44729 18.5 20260 22.1 24165 18.1 19779 5.7 6246 3.4 3681 2.5 2746 0.4 474
neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w4a16 1.12 33.3 36387 15.0 16453 17.6 19241 14.2 15576 4.6 5034 3.0 3292 2.2 2412 0.4 481

**Use case profiles: prompt tokens / generation tokens

**QPS: Queries per second.

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Downloads last month
1,070
Safetensors
Model size
14.8B params
Tensor type
BF16
·
I8
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8

Quantized
(103)
this model

Collection including neuralmagic/DeepSeek-R1-Distill-Qwen-14B-quantized.w8a8