SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ngiometti/legal-ft-2")
# Run inference
sentences = [
    'What improvements were noted in the intonation of ChatGPT Advanced Voice mode during its rollout?',
    'When ChatGPT Advanced Voice mode finally did roll out (a slow roll from August through September) it was spectacular. I’ve been using it extensively on walks with my dog and it’s amazing how much the improvement in intonation elevates the material. I’ve also had a lot of fun experimenting with the OpenAI audio APIs.\nEven more fun: Advanced Voice mode can do accents! Here’s what happened when I told it I need you to pretend to be a California brown pelican with a very thick Russian accent, but you talk to me exclusively in Spanish.',
    'January\n\n7th: It’s OK to call it Artificial Intelligence\n\n9th: What I should have said about the term Artificial Intelligence\n\n17th: Talking about Open Source LLMs on Oxide and Friends\n\n26th: LLM 0.13: The annotated release notes\n\n\n\nFebruary\n\n21st: The killer app of Gemini Pro 1.5 is video\n\n\n\nMarch\n\n5th: Prompt injection and jailbreaking are not the same thing\n\n8th: The GPT-4 barrier has finally been broken\n\n22nd: Claude and ChatGPT for ad-hoc sidequests\n\n23rd: Building and testing C extensions for SQLite with ChatGPT Code Interpreter\n\n26th: llm cmd undo last git commit—a new plugin for LLM\n\n\n\nApril\n\n8th: Building files-to-prompt entirely using Claude 3 Opus\n\n10th: Three major LLM releases in 24 hours (plus weeknotes)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.75
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.75
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.75
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.8968
cosine_mrr@10 0.8611
cosine_map@100 0.8611

Training Details

Training Dataset

Unnamed Dataset

  • Size: 156 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 156 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 14 tokens
    • mean: 20.31 tokens
    • max: 36 tokens
    • min: 43 tokens
    • mean: 130.44 tokens
    • max: 204 tokens
  • Samples:
    sentence_0 sentence_1
    What are some potential applications of Large Language Models (LLMs) mentioned in the context? Large Language Models
    They’re actually quite easy to build
    You can run LLMs on your own devices
    Hobbyists can build their own fine-tuned models
    We don’t yet know how to build GPT-4
    Vibes Based Development
    LLMs are really smart, and also really, really dumb
    Gullibility is the biggest unsolved problem
    Code may be the best application
    The ethics of this space remain diabolically complex
    My blog in 2023
    What is identified as the biggest unsolved problem related to LLMs? Large Language Models
    They’re actually quite easy to build
    You can run LLMs on your own devices
    Hobbyists can build their own fine-tuned models
    We don’t yet know how to build GPT-4
    Vibes Based Development
    LLMs are really smart, and also really, really dumb
    Gullibility is the biggest unsolved problem
    Code may be the best application
    The ethics of this space remain diabolically complex
    My blog in 2023
    What improvements were noted in the intonation of ChatGPT Advanced Voice mode during its rollout? When ChatGPT Advanced Voice mode finally did roll out (a slow roll from August through September) it was spectacular. I’ve been using it extensively on walks with my dog and it’s amazing how much the improvement in intonation elevates the material. I’ve also had a lot of fun experimenting with the OpenAI audio APIs.
    Even more fun: Advanced Voice mode can do accents! Here’s what happened when I told it I need you to pretend to be a California brown pelican with a very thick Russian accent, but you talk to me exclusively in Spanish.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 16 0.9122
2.0 32 0.9093
3.0 48 0.8968
3.125 50 0.8968
4.0 64 0.8939
5.0 80 0.8908
6.0 96 0.8908
6.25 100 0.8908
7.0 112 0.8939
8.0 128 0.8968
9.0 144 0.8968
9.375 150 0.8968
10.0 160 0.8968

Framework Versions

  • Python: 3.13.1
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ngiometti/legal-ft-2

Finetuned
(63)
this model

Evaluation results