bert-base-nsmc

This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0269
  • Train Accuracy: 0.9923
  • Validation Loss: 0.5523
  • Validation Accuracy: 0.8722
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.3945 0.8164 0.3522 0.8466 0
0.2128 0.9158 0.3317 0.8656 1
0.1030 0.9653 0.4110 0.8706 2
0.0465 0.9848 0.4870 0.8688 3
0.0269 0.9923 0.5523 0.8722 4

Framework versions

  • Transformers 4.48.3
  • TensorFlow 2.18.0
  • Tokenizers 0.21.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ohback/bert-base-nsmc

Base model

klue/bert-base
Finetuned
(126)
this model