|
--- |
|
base_model: |
|
- LiquidAI/LFM2-1.2B |
|
library_name: transformers.js |
|
license: other |
|
license_name: lfm1.0 |
|
license_link: LICENSE |
|
language: |
|
- en |
|
- ar |
|
- zh |
|
- fr |
|
- de |
|
- ja |
|
- ko |
|
- es |
|
pipeline_tag: text-generation |
|
tags: |
|
- liquid |
|
- edge |
|
--- |
|
|
|
|
|
<center> |
|
<div style="text-align: center;"> |
|
<img |
|
src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png" |
|
alt="Liquid AI" |
|
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;" |
|
/> |
|
</div> |
|
|
|
<a href="https://playground.liquid.ai/chat"> |
|
<svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;"> |
|
<title>Liquid: Playground</title> |
|
<g> |
|
<rect fill="#fff" width="600" height="200"></rect> |
|
<rect fill="url(#x)" x="600" width="700" height="200"></rect> |
|
</g> |
|
<g transform="translate(20, 30) scale(0.4, 0.4)"> |
|
<path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/> |
|
<path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/> |
|
<path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/> |
|
</g> |
|
<g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110"> |
|
<text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text> |
|
<text x="190" y="138" textLength="329" fill="#000">Liquid</text> |
|
<text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text> |
|
<text x="645" y="138" textLength="619">Playground</text> |
|
</g> |
|
|
|
<linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%"> |
|
<stop offset="0%" style="stop-color:#000000"></stop> |
|
<stop offset="100%" style="stop-color:#000000"></stop> |
|
</linearGradient> |
|
</svg> |
|
</a> |
|
</center> |
|
|
|
# LFM2-1.2B |
|
|
|
LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency. |
|
|
|
We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications: |
|
|
|
* **Fast training & inference** – LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3. |
|
* **Best performance** – LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities. |
|
* **New architecture** – LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions. |
|
* **Flexible deployment** – LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles. |
|
|
|
Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models). |
|
|
|
## 📄 Model details |
|
|
|
Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance. |
|
They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations. |
|
However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills. |
|
|
|
| Property | Value | |
|
| ------------------- | ----------------------------- | |
|
| **Parameters** | 1,170,340,608 | |
|
| **Layers** | 16 (10 conv + 6 attn) | |
|
| **Context length** | 32,768 tokens | |
|
| **Vocabulary size** | 65,536 | |
|
| **Precision** | bfloat16 | |
|
| **Training budget** | 10 trillion tokens | |
|
| **License** | LFM Open License v1.0 | |
|
|
|
**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish. |
|
|
|
**Generation parameters**: We recommend the following parameters: |
|
* `temperature=0.3` |
|
* `min_p=0.15` |
|
* `repetition_penalty=1.05` |
|
|
|
**Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks. |
|
|
|
**Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials. |
|
|
|
**Training approach**: |
|
* Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model |
|
* Very large-scale SFT on 50% downstream tasks, 50% general domains |
|
* Custom DPO with length normalization and semi-online datasets |
|
* Iterative model merging |
|
|
|
## 🏃 How to run LFM2 |
|
|
|
### Transformers.js |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example**: Basic example |
|
|
|
```js |
|
import { pipeline, TextStreamer } from "@huggingface/transformers"; |
|
|
|
// Create a text generation pipeline |
|
const generator = await pipeline( |
|
"text-generation", |
|
"onnx-community/LFM2-1.2B-ONNX", |
|
{ dtype: "q4" }, |
|
); |
|
|
|
// Define the list of messages |
|
const messages = [ |
|
{ role: "system", content: "You are a helpful assistant." }, |
|
{ role: "user", content: "What is the capital of France?" }, |
|
]; |
|
|
|
// Generate a response |
|
const output = await generator(messages, { |
|
max_new_tokens: 512, |
|
do_sample: false, |
|
streamer: new TextStreamer(generator.tokenizer, { skip_prompt: true, skip_special_tokens: true }), |
|
}); |
|
console.log(output[0].generated_text.at(-1).content); |
|
// The capital of France is Paris. |
|
``` |
|
|
|
|
|
**Example**: Tool calling |
|
|
|
```js |
|
import { AutoModelForCausalLM, AutoTokenizer, TextStreamer } from "@huggingface/transformers"; |
|
|
|
// Load tokenizer and model |
|
const model_id = "onnx-community/LFM2-1.2B-ONNX"; |
|
const tokenizer = await AutoTokenizer.from_pretrained(model_id); |
|
const model = await AutoModelForCausalLM.from_pretrained( |
|
model_id, { dtype: "q4", device: "webgpu" }, |
|
); |
|
|
|
// Define tools and messages |
|
const tools = [ |
|
{ |
|
name: "get_weather", |
|
description: "Get current weather information for a location", |
|
parameters: { |
|
type: "object", |
|
properties: { |
|
location: { |
|
type: "string", |
|
description: "The city and state, e.g. San Francisco, CA", |
|
}, |
|
unit: { |
|
type: "string", |
|
enum: ["celsius", "fahrenheit"], |
|
description: "The unit of temperature to use", |
|
}, |
|
}, |
|
required: ["location"], |
|
}, |
|
}, |
|
]; |
|
const messages = [ |
|
{ |
|
role: "user", |
|
content: "What's the weather like in New York?" |
|
}, |
|
]; |
|
|
|
// Prepare inputs |
|
const input = tokenizer.apply_chat_template(messages, { |
|
tools, |
|
add_generation_prompt: true, |
|
return_dict: true, |
|
}); |
|
|
|
// Generate output |
|
const sequences = await model.generate({ |
|
...input, |
|
max_new_tokens: 512, |
|
do_sample: false, |
|
streamer: new TextStreamer(tokenizer, { skip_prompt: true, skip_special_tokens: false }), |
|
}); |
|
|
|
// Decode and print the generated text |
|
const response = tokenizer.batch_decode( |
|
sequences.slice(null, [input.input_ids.dims[1], null]), |
|
{ skip_special_tokens: true }, |
|
); |
|
console.log(response[0]); // [get_weather(location="New York", unit="fahrenheit")] |
|
``` |
|
|
|
|
|
### ONNXRuntime |
|
|
|
```py |
|
from transformers import AutoConfig, AutoTokenizer |
|
import onnxruntime |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
|
|
# 1. Load config, processor, and model |
|
model_id = "onnx-community/LFM2-1.2B-ONNX" |
|
config = AutoConfig.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
filename = "model.onnx" # Options: "model.onnx", "model_fp16.onnx", "model_q4.onnx", "model_q4f16.onnx" |
|
model_path = hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}") # Download the graph |
|
hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}_data") # Download the weights |
|
session = onnxruntime.InferenceSession(model_path) |
|
|
|
## Set config values |
|
num_key_value_heads = config.num_key_value_heads |
|
head_dim = config.hidden_size // config.num_attention_heads |
|
num_hidden_layers = config.num_hidden_layers |
|
eos_token_id = config.eos_token_id |
|
hidden_size = config.hidden_size |
|
conv_L_cache = config.conv_L_cache |
|
layer_types = config.layer_types |
|
|
|
# 2. Prepare inputs |
|
prompt = "What is C. elegans?" |
|
messages = [{"role": "user", "content": prompt}] |
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np") |
|
input_ids = inputs['input_ids'] |
|
attention_mask = inputs['attention_mask'] |
|
batch_size = input_ids.shape[0] |
|
position_ids = np.tile(np.arange(0, input_ids.shape[-1]), (batch_size, 1)) |
|
past_cache_values = {} |
|
for i in range(num_hidden_layers): |
|
if layer_types[i] == 'full_attention': |
|
for kv in ('key', 'value'): |
|
past_cache_values[f'past_key_values.{i}.{kv}'] = np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32) |
|
elif layer_types[i] == 'conv': |
|
past_cache_values[f'past_conv.{i}'] = np.zeros([batch_size, hidden_size, conv_L_cache], dtype=np.float32) |
|
else: |
|
raise ValueError(f"Unsupported layer type: {layer_types[i]}") |
|
|
|
# 3. Generation loop |
|
max_new_tokens = 1024 |
|
generated_tokens = np.array([[]], dtype=np.int64) |
|
for i in range(max_new_tokens): |
|
logits, *present_cache_values = session.run(None, dict( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
**past_cache_values, |
|
)) |
|
|
|
## Update values for next generation loop |
|
input_ids = logits[:, -1].argmax(-1, keepdims=True) |
|
attention_mask = np.concatenate([attention_mask, np.ones_like(input_ids, dtype=np.int64)], axis=-1) |
|
position_ids = position_ids[:, -1:] + 1 |
|
for j, key in enumerate(past_cache_values): |
|
past_cache_values[key] = present_cache_values[j] |
|
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1) |
|
if (input_ids == eos_token_id).all(): |
|
break |
|
|
|
## (Optional) Streaming |
|
print(tokenizer.decode(input_ids[0]), end='', flush=True) |
|
print() |
|
|
|
# 4. Output result |
|
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]) |
|
``` |