https://huggingface.co/PekingU/rtdetr_r50vd with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

NOTE: RT-DETR support is experimental and requires you to install Transformers.js v3 from source.

If you haven't already, you can install the Transformers.js JavaScript library from GitHub using:

npm install xenova/transformers.js#v3

Example: Perform object-detection with onnx-community/rtdetr_r50vd.

import { pipeline } from '@xenova/transformers';

const detector = await pipeline('object-detection', 'onnx-community/rtdetr_r50vd');

const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const output = await detector(img, { threshold: 0.9 });
// [{
//   score: 0.9720445871353149,
//   label: 'cat',
//   box: { xmin: 14, ymin: 54, xmax: 319, ymax: 472 }
// },
// ...
// {
//   score: 0.9795005917549133,
//   label: 'sofa',
//   box: { xmin: 0, ymin: 0, xmax: 640, ymax: 472 }
// }]

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
38
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for transformers.js library.

Model tree for onnx-community/rtdetr_r50vd

Quantized
(1)
this model