metadata
library_name: transformers
license: apache-2.0
language:
- de
base_model:
- google-bert/bert-base-german-cased
pipeline_tag: token-classification
C-BERT
CausalBERT (C-BERT) is a multi-task fine-tuned German BERT that extracts causal attributions.
Model details
- Model architecture: BERT-base-German-cased + token & relation heads
- Fine-tuned on: environmental causal attribution corpus (German)
- Tasks:
- Token classification (BIO tags for INDICATOR / ENTITY)
- Relation classification (CAUSE, EFFECT, INTERDEPENDENCY)
Usage
Find the custom library. Once installed, run inference like so:
from transformers import AutoTokenizer
from causalbert.infer import load_model, analyze_sentence_with_confidence
model, tokenizer, config, device = load_model("norygano/C-BERT")
result = analyze_sentence_with_confidence(
model, tokenizer, config, "Autoverkehr verursacht Bienensterben.", []
)
Training
- Base model:
google-bert/bert-base-german-cased
- Epochs: 3, LR: 2e-5, Batch size: 8
- See train.py for details.
Limitations
- Only German.
- Sentence-level; doesn’t handle cross-sentence causality.
- Relation classification depends on detected spans — errors in token tagging propagate.