See oumi train config
oumi version: 0.1.3
data:
train:
datasets:
- dataset_name: HuggingFaceH4/ultrachat_200k
dataset_path: null
subset: null
split: train_sft
dataset_kwargs: {}
sample_count: null
mixture_proportion: null
shuffle: false
seed: null
shuffle_buffer_size: 1000
trust_remote_code: true
transform_num_workers: null
collator_name: null
pack: false
stream: false
target_col: null
mixture_strategy: first_exhausted
seed: null
use_async_dataset: false
use_torchdata: null
test:
datasets: []
collator_name: null
pack: false
stream: false
target_col: null
mixture_strategy: first_exhausted
seed: null
use_async_dataset: false
use_torchdata: null
validation:
datasets: []
collator_name: null
pack: false
stream: false
target_col: null
mixture_strategy: first_exhausted
seed: null
use_async_dataset: false
use_torchdata: null
model:
model_name: meta-llama/Meta-Llama-3.1-8B
adapter_model: null
tokenizer_name: null
tokenizer_pad_token: null
tokenizer_kwargs: {}
model_max_length: 8192
load_pretrained_weights: true
trust_remote_code: true
torch_dtype_str: bfloat16
compile: false
chat_template: llama3-instruct
attn_implementation: flash_attention_2
device_map: auto
model_kwargs: {}
enable_liger_kernel: true
shard_for_eval: false
freeze_layers: []
training:
use_peft: false
trainer_type: TRL_SFT
enable_gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
output_dir: output/llama8b-ultrachat
per_device_train_batch_size: 1
per_device_eval_batch_size: 8
gradient_accumulation_steps: 8
max_steps: -1
num_train_epochs: 1
save_epoch: false
save_steps: 800
save_final_model: true
seed: 42
run_name: llama8b-ultrachat.sky-2025-01-30-21-19-10-053582_sky-e018-bf996_1
metrics_function: null
log_level: info
dep_log_level: warning
enable_wandb: true
enable_tensorboard: true
logging_strategy: steps
logging_dir: null
logging_steps: 100
logging_first_step: false
eval_strategy: 'no'
eval_steps: 500
learning_rate: 2.0e-05
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: null
warmup_steps: null
optimizer: paged_adamw_8bit
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1.0e-08
sgd_momentum: 0.0
mixed_precision_dtype: NONE
compile: false
include_performance_metrics: true
include_alternative_mfu_metrics: false
log_model_summary: false
resume_from_checkpoint: null
try_resume_from_last_checkpoint: false
dataloader_num_workers: 8
dataloader_prefetch_factor: 32
dataloader_main_process_only: null
ddp_find_unused_parameters: false
max_grad_norm: 1.0
trainer_kwargs:
max_seq_length: 8192
profiler:
save_dir: null
enable_cpu_profiling: false
enable_cuda_profiling: false
record_shapes: false
profile_memory: false
with_stack: false
with_flops: false
with_modules: false
row_limit: 50
schedule:
enable_schedule: false
wait: 0
warmup: 1
active: 3
repeat: 1
skip_first: 1
telemetry:
telemetry_dir: telemetry
collect_telemetry_for_all_ranks: false
track_gpu_temperature: false
empty_device_cache_steps: 50
nccl_default_timeout_minutes: null
peft:
lora_r: 8
lora_alpha: 8
lora_dropout: 0.0
lora_target_modules: null
lora_modules_to_save: null
lora_bias: none
lora_init_weights: DEFAULT
lora_task_type: CAUSAL_LM
q_lora: false
q_lora_bits: 4
bnb_4bit_quant_type: fp4
use_bnb_nested_quant: false
bnb_4bit_quant_storage: uint8
bnb_4bit_compute_dtype: float32
peft_save_mode: ADAPTER_ONLY
fsdp:
enable_fsdp: false
sharding_strategy: FULL_SHARD
cpu_offload: false
mixed_precision: null
backward_prefetch: BACKWARD_PRE
forward_prefetch: false
use_orig_params: null
state_dict_type: FULL_STATE_DICT
auto_wrap_policy: NO_WRAP
min_num_params: 100000
transformer_layer_cls: null
sync_module_states: true
See oumi cloud config
name: llama8b-ultrachat-sft
num_nodes: 1
resources:
cloud: gcp
accelerators: "A100-80GB:4"
use_spot: false
disk_size: 2000 # Disk size in GBs
working_dir: .
file_mounts:
~/.netrc: ~/.netrc # WandB credentials
# Mount HF token, which is needed to download locked-down models from HF Hub.
# This is created on the local machine by running `huggingface-cli login`.
~/.cache/huggingface/token: ~/.cache/huggingface/token
envs:
WANDB_PROJECT: oumi-train
OUMI_RUN_NAME: llama8b-ultrachat
OUMI_USER_NAME: penfever
ACCELERATE_LOG_LEVEL: info
# https://github.com/huggingface/tokenizers/issues/899#issuecomment-1027739758
TOKENIZERS_PARALLELISM: false
setup: |
set -e
pip install uv && uv pip install -e .[gpu,evaluation] hf_transfer
# Install model from HF Hub. This tool increases download speed compared to
# downloading the model during training.
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download meta-llama/Meta-Llama-3.1-8B --exclude original/*
pip install -U flash-attn --no-build-isolation
run: |
set -e # Exit if any command failed.
source ./configs/examples/misc/sky_init.sh
set -x
oumi distributed torchrun \
-m oumi train \
-c configs/recipes/llama3_1/sft/8b_full/base_ultrachat.yaml \
--training.run_name "${OUMI_RUN_NAME}.${SKYPILOT_TASK_ID}" \
echo "Node ${SKYPILOT_NODE_RANK} is all done!"
Llama-3-8B-UltraChat-200K-Oumi
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the HuggingFaceH4/ultrachat_200k dataset. It achieves a training loss of 1.0435.
Model description
This model was trained as a partial reproduction of results from the recent WildChat-50M
paper.
@misc{feuer2025wildchat50mdeepdiverole,
title={WILDCHAT-50M: A Deep Dive Into the Role of Synthetic Data in Post-Training},
author={Benjamin Feuer and Chinmay Hegde},
year={2025},
eprint={2501.18511},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2501.18511},
}
Intended uses & limitations
This model is intended for research use; it has not received any safety oriented post-training.
Artifacts
The following is a list of artifacts which may be present in this repository, as well as brief descriptions of what they contain.
Logs
Contains logs from the training process, one for each rank.
Telemetry
devices_info.txt
: A file containing information about the devices used to train the model.
telemetry_callback_metrics.json
: File containing metrics from the training process such as loss and number of tokens seen.
telemetry_callback_wandb.json
: File containing weights and biases parameters.
telemetry_callback.json
: File containing metadata such as time to train and number of epochs trained.
training_config.yaml
: File containing the training configuration used to train the model (also found in this README)
world_size.json
: File containing the world size used to train the model.
Datasets
Summary statistics about the datasets used to train this model.
HuggingFaceH4/ultrachat_200k
Split
: train_sft
Version
: 0.0.0
Dataset size
: 3047427114 bytes
Download size
: 1624049723 bytes
Size
: 4671476837 bytes
Rows
: 207865
Columns
: ['prompt', 'prompt_id', 'messages']
Results
Training Loss
Training Loss | Epoch | Tokens Seen |
---|---|---|
1.043 | 0.999 | 246 Mn |
Evaluation
Following the paper, our benchmark results are reported using Evalchemy. For more details on the evaluation metrics, please refer to the paper. We compare to this baseline model used in the paper.
Metric | Oumi Repro | Baseline |
---|---|---|
MTBench | 5.2313 | 5.0187 |
Alpaca Eval (LC) | 1.6157 | 4.1260 |
BBH | 0.4861 | 0.4845 |
GPQA | 0.2903 | 0.3204 |
MATH | 0.0552 | 0.0458 |
MUSR | 0.4116 | 0.3917 |
IFEval (Prompt Level, Strict) | 0.1978 | 0.2643 |
MMLU Pro | 0.3118 | 0.3198 |
MixEval | 0.5935 | 0.63 |
Average | 0.321 | 0.333 |
- Downloads last month
- 23