Robotics
LeRobot
Safetensors
smolvla
my_policy21 / README.md
pepijn223's picture
pepijn223 HF Staff
Upload policy
d31f420 verified
metadata
base_model: lerobot/smolvla_base
datasets:
  - imstevenpmwork/thanos_picking_power_gem_1749731584242992
library_name: lerobot
license: apache-2.0
model_name: smolvla
pipeline_tag: robotics
tags:
  - robotics
  - smolvla
model_summary: >-
  [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient
  vision-language-action model that achieves competitive performance at reduced
  computational costs and can be deployed on consumer-grade hardware.

Model Card for smolvla

SmolVLA is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.

This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.


How to Get Started with the Model

For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:

1 Train from scratch

python lerobot/scripts/train.py \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true

Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.

2 Evaluate the policy

python -m lerobot.record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10

Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.


Model Details

  • License: apache-2.0