piyushmaharana's picture
End of training
e8e4b26 verified
metadata
language:
  - en
license: apache-2.0
base_model: piyushmaharana/outcomes-whisper-tiny-v1.1
tags:
  - generated_from_trainer
datasets:
  - ray-outcomes-ai/big-transcript-pronounce
metrics:
  - wer
model-index:
  - name: OutcomesAI-Whisper-tiny-v1.2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: big-transcript-pronounce
          type: ray-outcomes-ai/big-transcript-pronounce
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 1.7139090309822018

OutcomesAI-Whisper-tiny-v1.2

This model is a fine-tuned version of piyushmaharana/outcomes-whisper-tiny-v1.1 on the big-transcript-pronounce dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0256
  • Wer: 1.7139

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.112 2.1645 500 0.0645 5.5784
0.013 4.3290 1000 0.0310 2.3237
0.0032 6.4935 1500 0.0264 1.7798
0.0012 8.6580 2000 0.0260 1.7304
0.0007 10.8225 2500 0.0257 1.7963
0.0006 12.9870 3000 0.0256 1.7139

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1