codebert-fine-tuned

This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.5941 0.0325 500 2.0780
2.091 0.0651 1000 1.8173
1.9005 0.0976 1500 1.6783
1.7817 0.1301 2000 1.6071
1.712 0.1626 2500 1.5634
1.6661 0.1952 3000 1.5229
1.6348 0.2277 3500 1.4965
1.6106 0.2602 4000 1.4514
1.5685 0.2928 4500 1.4360
1.5419 0.3253 5000 1.4203
1.5429 0.3578 5500 1.4026
1.5069 0.3903 6000 1.3959
1.5021 0.4229 6500 1.3819
1.4651 0.4554 7000 1.3660
1.4704 0.4879 7500 1.3544
1.4799 0.5205 8000 1.3428
1.44 0.5530 8500 1.3357
1.4433 0.5855 9000 1.3224
1.4297 0.6180 9500 1.3173
1.4115 0.6506 10000 1.3069
1.4119 0.6831 10500 1.2996
1.3908 0.7156 11000 1.2972
1.4022 0.7482 11500 1.2879
1.381 0.7807 12000 1.2843
1.374 0.8132 12500 1.2747
1.382 0.8457 13000 1.2734
1.3746 0.8783 13500 1.2576
1.3724 0.9108 14000 1.2605
1.3404 0.9433 14500 1.2560
1.3452 0.9759 15000 1.2414
1.3433 1.0084 15500 1.2373
1.3273 1.0409 16000 1.2398
1.3175 1.0735 16500 1.2311
1.3123 1.1060 17000 1.2217
1.3095 1.1385 17500 1.2213
1.3229 1.1710 18000 1.2167
1.2995 1.2036 18500 1.2185
1.3019 1.2361 19000 1.2144
1.299 1.2686 19500 1.2093
1.2784 1.3012 20000 1.1990
1.2886 1.3337 20500 1.2032
1.2788 1.3662 21000 1.1943
1.284 1.3987 21500 1.1975
1.2706 1.4313 22000 1.1878
1.2771 1.4638 22500 1.1856
1.2731 1.4963 23000 1.1797
1.2607 1.5289 23500 1.1919
1.2729 1.5614 24000 1.1872
1.272 1.5939 24500 1.1712
1.251 1.6264 25000 1.1656
1.2437 1.6590 25500 1.1665
1.2523 1.6915 26000 1.1697
1.2393 1.7240 26500 1.1546
1.2521 1.7566 27000 1.1595
1.2498 1.7891 27500 1.1541
1.2187 1.8216 28000 1.1586
1.2311 1.8541 28500 1.1530
1.2419 1.8867 29000 1.1412
1.2246 1.9192 29500 1.1460
1.2381 1.9517 30000 1.1475
1.2237 1.9843 30500 1.1432
1.2273 2.0168 31000 1.1458
1.2167 2.0493 31500 1.1368
1.2039 2.0818 32000 1.1358
1.2142 2.1144 32500 1.1410
1.2003 2.1469 33000 1.1278
1.2052 2.1794 33500 1.1344
1.2094 2.2120 34000 1.1378
1.2128 2.2445 34500 1.1291
1.1936 2.2770 35000 1.1280
1.195 2.3095 35500 1.1278
1.207 2.3421 36000 1.1220
1.1969 2.3746 36500 1.1248
1.188 2.4071 37000 1.1159
1.1921 2.4397 37500 1.1187
1.1916 2.4722 38000 1.1196
1.1797 2.5047 38500 1.1167
1.1865 2.5372 39000 1.1135
1.1787 2.5698 39500 1.1154
1.1865 2.6023 40000 1.1174
1.1754 2.6348 40500 1.1161
1.1805 2.6674 41000 1.1085
1.1786 2.6999 41500 1.1116
1.1689 2.7324 42000 1.1069
1.1755 2.7649 42500 1.1032
1.1858 2.7975 43000 1.1027
1.1722 2.8300 43500 1.1027
1.1686 2.8625 44000 1.1002
1.1801 2.8951 44500 1.1016
1.1596 2.9276 45000 1.1024
1.1788 2.9601 45500 1.1052
1.1609 2.9926 46000 1.0908

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
18
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pogtador/codebert-fine-tuned

Finetuned
(34)
this model