prithivMLmods's picture
Adding Evaluation Results (#2)
2fb2850 verified
---
license: apache-2.0
language:
- en
base_model:
- prithivMLmods/Megatron-Opus-14B-Exp
pipeline_tag: text-generation
library_name: transformers
tags:
- Corpus
- Qwen
- trl
model-index:
- name: Megatron-Corpus-14B-Exp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 49.83
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Corpus-14B-Exp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 47.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Corpus-14B-Exp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 34.29
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Corpus-14B-Exp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.1
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Corpus-14B-Exp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.85
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Corpus-14B-Exp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.33
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FMegatron-Corpus-14B-Exp
name: Open LLM Leaderboard
---
![dsfsdf.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KRdF8fPkVNy-b7hlgUp75.gif)
# **Megatron-Corpus-14B-Exp**
Megatron-Corpus-14B-Exp is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. It has been fine-tuned on a synthetic dataset based on math corpus, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
### **Key Improvements**
1. **Advanced Reasoning & Logic**: Optimized for multi-step problem-solving, logical deduction, and contextual analysis.
2. **Fine-Tuned Instruction Following**: Generates precise responses, structured outputs (e.g., JSON), and extended long-form text (8K+ tokens).
3. **Greater Adaptability**: Excels in role-playing, multi-turn dialogues, and diverse system prompts.
4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
### **Quickstart with Transformers**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Megatron-Corpus-14B-Exp"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Explain the concept of logical reasoning in AI."
messages = [
{"role": "system", "content": "You are an expert AI assistant specialized in reasoning and logic."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
### **Intended Use**
- **Advanced Logical & Analytical Reasoning**: Designed for problem-solving, multi-step deductions, and cognitive reasoning tasks.
- **Mathematical & Scientific Computation**: Supports theorem proving, complex calculations, and scientific knowledge retrieval.
- **Code Generation & Debugging**: Generates optimized code, detects errors, and improves programming workflows.
- **Structured Data Analysis**: Processes tables, JSON, and structured formats for data-centric applications.
- **Multilingual Reasoning & Translation**: High proficiency across **29+ languages** for international applications.
- **Extended Text Generation**: Capable of generating research papers, instructional guides, and in-depth reports.
### **Limitations**
1. **High Computational Requirements**: Due to its **14B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
2. **Language-Specific Variability**: Performance may differ across supported languages, especially for low-resource languages.
3. **Potential Error Accumulation**: Long-form text generation can introduce inconsistencies over extended outputs.
4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
5. **Prompt Sensitivity**: The quality of responses depends on the specificity and clarity of the input prompt.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Megatron-Corpus-14B-Exp-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FMegatron-Corpus-14B-Exp&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 35.55|
|IFEval (0-Shot) | 49.83|
|BBH (3-Shot) | 47.92|
|MATH Lvl 5 (4-Shot)| 34.29|
|GPQA (0-shot) | 15.10|
|MuSR (0-shot) | 18.85|
|MMLU-PRO (5-shot) | 47.33|