The model that corresponds to Q-Align (ICML2024).

Quick Start with AutoModel

For this image, start an AutoModel scorer with transformers==4.36.1:

import requests
import torch
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("q-future/one-align", trust_remote_code=True, attn_implementation="eager", 
                                             torch_dtype=torch.float16, device_map="auto")

from PIL import Image
url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg"
image = Image.open(requests.get(url,stream=True).raw)
model.score([image], task_="quality", input_="image")
# task_ : quality | aesthetics; # input_: image | video

Result should be 1.911 (in range [1,5], higher is better).

From paper: arxiv.org/abs/2312.17090.

Syllabus

IQA Results (Spearman/Pearson/Kendall)

Datasets KonIQ (NR-IQA, seen) SPAQ (NR-IQA, Seen) KADID (FR-IQA, Seen) LIVE-C (NR-IQA, Unseen) LIVE (FR-IQA, Unseen) CSIQ (FR-IQA, Unseen) AGIQA (AIGC, Unseen)
Previous SOTA 0.916/0.928 (MUSIQ, ICCV2021) 0.922/0.919 (LIQE, CVPR2023) 0.934/0.937 (CONTRIQUE, TIP2022) NA NA NA NA
Q-Align (IQA) 0.937/0.945/0.785 0.931/0.933/0.763 0.934/0.934/0.777 0.887/0.896/0.706 0.874/0.840/0.682 0.845/0.876/0.654 0.731/0.791/0.529
Q-Align (IQA+VQA) 0.944/0.949/0.797 0.931/0.934/0.764 0.952/0.953/0.809 0.892/0.899/0.715 0.874/0.846/0.684 0.852/0.876/0.663 0.739/0.782/0.526
OneAlign (IQA+IAA+VQA) 0.941/0.950/0.791 0.932/0.935/0.766 0.941/0.942/0.791 0.881/0.894/0.699 0.887/0.856/0.699 0.881/0.906/0.699 0.801/0.838/0.602

IAA Results (Spearman/Pearson)

Dataset AVA_test
VILA (CVPR, 2023) 0.774/0.774
LIQE (CVPR, 2023) 0.776/0.763
Aesthetic Predictor (retrained on AVA_train) 0.721/0.723
Q-Align (IAA) 0.822/0.817
OneAlign (IQA+IAA+VQA) 0.823/0.819

VQA Results (Spearman/Pearson)

Datasets LSVQ_test LSVQ_1080p KoNViD-1k MaxWell_test
SimpleVQA (ACMMM, 2022) 0.867/0.861 0.764/0.803 0.840/0.834 0.720/0.715
FAST-VQA (ECCV 2022) 0.876/0.877 0.779/0.814 0.859/0.855 0.721/0.724
Q-Align (VQA) 0.883/0.882 0.797/0.830 0.865/0.877 0.780/0.782
Q-Align (IQA+VQA) 0.885/0.883 0.802/0.829 0.867/0.880 0.781/0.787
OneAlign (IQA+IAA+VQA) 0.886/0.886 0.803/0.837 0.876/0.888 0.781/0.786
Downloads last month
175,699
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Spaces using q-future/one-align 6

Collection including q-future/one-align