Uploaded model

  • Developed by: qcube
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Sample use

以下は、elyza-tasks-100-TV_0.jsonl の回答のためのコードです。

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
import torch
from tqdm import tqdm
import json

HF_TOKEN = "your-token"
model_name = "qcube/llm-jp-3-13b-finetune2"

# QLoRA config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False,
)

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
    token=HF_TOKEN,
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    trust_remote_code=True,
    token=HF_TOKEN,
)

# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

# llmjp
results = []
for data in tqdm(datasets):

    input = data["input"]

    prompt = f"""### 指示
    {input}
    ### 回答:
    """

    tokenized_input = tokenizer.encode(
        prompt, add_special_tokens=False, return_tensors="pt"
    ).to(model.device)
    with torch.no_grad():
        outputs = model.generate(
            tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2
        )[0]
    output = tokenizer.decode(
        outputs[tokenized_input.size(1) :], skip_special_tokens=True
    )

    results.append({"task_id": data["task_id"], "input": input, "output": output})


import re

model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", "w", encoding="utf-8") as f:
    for result in results:
        json.dump(
            result, f, ensure_ascii=False
        )  # ensure_ascii=False for handling non-ASCII characters
        f.write("\n")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for qcube/llm-jp-3-13b-finetune2

Finetuned
(1122)
this model