ESRGAN: Optimized for Mobile Deployment

Upscale images and remove image noise

ESRGAN is a machine learning model that upscales an image with minimal loss in quality.

This model is an implementation of ESRGAN found here.

This repository provides scripts to run ESRGAN on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Super resolution
  • Model Stats:
    • Model checkpoint: ESRGAN_x4
    • Input resolution: 128x128
    • Number of parameters: 16.7M
    • Model size: 64.0 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
ESRGAN Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 66.528 ms 0 - 111 MB FP16 NPU ESRGAN.tflite
ESRGAN Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 67.6 ms 0 - 3 MB FP16 NPU ESRGAN.so
ESRGAN Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 76.337 ms 0 - 114 MB FP16 NPU ESRGAN.onnx
ESRGAN Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 52.055 ms 3 - 114 MB FP16 NPU ESRGAN.tflite
ESRGAN Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 50.399 ms 0 - 15 MB FP16 NPU ESRGAN.so
ESRGAN Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 51.529 ms 4 - 169 MB FP16 NPU ESRGAN.onnx
ESRGAN Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 39.174 ms 3 - 136 MB FP16 NPU ESRGAN.tflite
ESRGAN Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 42.769 ms 0 - 131 MB FP16 NPU Use Export Script
ESRGAN Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 43.469 ms 6 - 134 MB FP16 NPU ESRGAN.onnx
ESRGAN SA7255P ADP SA7255P TFLITE 3548.824 ms 0 - 131 MB FP16 NPU ESRGAN.tflite
ESRGAN SA7255P ADP SA7255P QNN 3549.068 ms 1 - 8 MB FP16 NPU Use Export Script
ESRGAN SA8255 (Proxy) SA8255P Proxy TFLITE 65.225 ms 0 - 109 MB FP16 NPU ESRGAN.tflite
ESRGAN SA8255 (Proxy) SA8255P Proxy QNN 64.759 ms 0 - 3 MB FP16 NPU Use Export Script
ESRGAN SA8295P ADP SA8295P TFLITE 112.17 ms 3 - 123 MB FP16 NPU ESRGAN.tflite
ESRGAN SA8295P ADP SA8295P QNN 111.101 ms 0 - 11 MB FP16 NPU Use Export Script
ESRGAN SA8650 (Proxy) SA8650P Proxy TFLITE 66.479 ms 0 - 118 MB FP16 NPU ESRGAN.tflite
ESRGAN SA8650 (Proxy) SA8650P Proxy QNN 62.835 ms 0 - 2 MB FP16 NPU Use Export Script
ESRGAN SA8775P ADP SA8775P TFLITE 131.583 ms 3 - 135 MB FP16 NPU ESRGAN.tflite
ESRGAN SA8775P ADP SA8775P QNN 131.037 ms 0 - 7 MB FP16 NPU Use Export Script
ESRGAN QCS8275 (Proxy) QCS8275 Proxy TFLITE 3548.824 ms 0 - 131 MB FP16 NPU ESRGAN.tflite
ESRGAN QCS8275 (Proxy) QCS8275 Proxy QNN 3549.068 ms 1 - 8 MB FP16 NPU Use Export Script
ESRGAN QCS8550 (Proxy) QCS8550 Proxy TFLITE 63.976 ms 3 - 43 MB FP16 NPU ESRGAN.tflite
ESRGAN QCS8550 (Proxy) QCS8550 Proxy QNN 65.054 ms 0 - 3 MB FP16 NPU Use Export Script
ESRGAN QCS9075 (Proxy) QCS9075 Proxy TFLITE 131.583 ms 3 - 135 MB FP16 NPU ESRGAN.tflite
ESRGAN QCS9075 (Proxy) QCS9075 Proxy QNN 131.037 ms 0 - 7 MB FP16 NPU Use Export Script
ESRGAN QCS8450 (Proxy) QCS8450 Proxy TFLITE 133.0 ms 3 - 107 MB FP16 NPU ESRGAN.tflite
ESRGAN QCS8450 (Proxy) QCS8450 Proxy QNN 137.352 ms 0 - 89 MB FP16 NPU Use Export Script
ESRGAN Snapdragon X Elite CRD Snapdragon® X Elite QNN 64.88 ms 0 - 0 MB FP16 NPU Use Export Script
ESRGAN Snapdragon X Elite CRD Snapdragon® X Elite ONNX 65.625 ms 39 - 39 MB FP16 NPU ESRGAN.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.esrgan.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.esrgan.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.esrgan.export
Profiling Results
------------------------------------------------------------
ESRGAN
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 66.5                   
Estimated peak memory usage (MB): [0, 111]               
Total # Ops                     : 1024                   
Compute Unit(s)                 : NPU (1024 ops)         

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.esrgan import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.esrgan.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.esrgan.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on ESRGAN's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of ESRGAN can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-to-image models for pytorch library.