EasyOCR: Optimized for Mobile Deployment

Ready-to-use OCR with 80+ supported languages and all popular writing scripts

EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.

This model is an implementation of EasyOCR found here.

This repository provides scripts to run EasyOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Image to text
  • Model Stats:
    • Model checkpoint: easyocr-small-stage1
    • Input resolution: 384x384
    • Number of parameters (EasyOCRDetector): 20.8M
    • Model size (EasyOCRDetector): 79.2 MB
    • Number of parameters (EasyOCRRecognizer): 3.84M
    • Model size (EasyOCRRecognizer): 14.7 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
EasyOCRDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 41.189 ms 0 - 136 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 39.017 ms 6 - 9 MB FP16 NPU EasyOCR.so
EasyOCRDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 40.015 ms 34 - 181 MB FP16 NPU EasyOCR.onnx
EasyOCRDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 30.181 ms 14 - 45 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 29.323 ms 6 - 25 MB FP16 NPU EasyOCR.so
EasyOCRDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 29.584 ms 38 - 75 MB FP16 NPU EasyOCR.onnx
EasyOCRDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 28.753 ms 15 - 45 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 24.26 ms 6 - 36 MB FP16 NPU Use Export Script
EasyOCRDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 28.097 ms 43 - 78 MB FP16 NPU EasyOCR.onnx
EasyOCRDetector SA7255P ADP SA7255P TFLITE 2113.678 ms 3 - 28 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA7255P ADP SA7255P QNN 2111.684 ms 0 - 8 MB FP16 NPU Use Export Script
EasyOCRDetector SA8255 (Proxy) SA8255P Proxy TFLITE 41.731 ms 0 - 97 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8255 (Proxy) SA8255P Proxy QNN 38.998 ms 6 - 8 MB FP16 NPU Use Export Script
EasyOCRDetector SA8295P ADP SA8295P TFLITE 78.45 ms 16 - 42 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8295P ADP SA8295P QNN 76.549 ms 0 - 11 MB FP16 NPU Use Export Script
EasyOCRDetector SA8650 (Proxy) SA8650P Proxy TFLITE 42.824 ms 0 - 145 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8650 (Proxy) SA8650P Proxy QNN 40.764 ms 6 - 8 MB FP16 NPU Use Export Script
EasyOCRDetector SA8775P ADP SA8775P TFLITE 88.536 ms 16 - 41 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector SA8775P ADP SA8775P QNN 86.522 ms 1 - 9 MB FP16 NPU Use Export Script
EasyOCRDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 2113.678 ms 3 - 28 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS8275 (Proxy) QCS8275 Proxy QNN 2111.684 ms 0 - 8 MB FP16 NPU Use Export Script
EasyOCRDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 41.678 ms 0 - 126 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS8550 (Proxy) QCS8550 Proxy QNN 39.278 ms 6 - 8 MB FP16 NPU Use Export Script
EasyOCRDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 88.536 ms 16 - 41 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS9075 (Proxy) QCS9075 Proxy QNN 86.522 ms 1 - 9 MB FP16 NPU Use Export Script
EasyOCRDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 80.295 ms 16 - 48 MB FP16 NPU EasyOCR.tflite
EasyOCRDetector QCS8450 (Proxy) QCS8450 Proxy QNN 69.9 ms 6 - 37 MB FP16 NPU Use Export Script
EasyOCRDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 39.87 ms 6 - 6 MB FP16 NPU Use Export Script
EasyOCRDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 41.319 ms 66 - 66 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 109.812 ms 6 - 8 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 20.483 ms 0 - 3 MB FP16 NPU EasyOCR.so
EasyOCRRecognizer Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 21.731 ms 0 - 24 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 108.852 ms 2 - 20 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 14.237 ms 0 - 16 MB FP16 NPU EasyOCR.so
EasyOCRRecognizer Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 16.212 ms 1 - 24 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 107.149 ms 14 - 30 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 20.63 ms 0 - 346 MB FP16 NPU Use Export Script
EasyOCRRecognizer Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 17.677 ms 0 - 18 MB FP16 NPU EasyOCR.onnx
EasyOCRRecognizer SA7255P ADP SA7255P TFLITE 565.404 ms 9 - 17 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA7255P ADP SA7255P QNN 285.155 ms 0 - 8 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8255 (Proxy) SA8255P Proxy TFLITE 124.344 ms 9 - 11 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8255 (Proxy) SA8255P Proxy QNN 20.321 ms 0 - 3 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8295P ADP SA8295P TFLITE 214.709 ms 8 - 18 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8295P ADP SA8295P QNN 30.834 ms 0 - 12 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8650 (Proxy) SA8650P Proxy TFLITE 101.784 ms 7 - 11 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8650 (Proxy) SA8650P Proxy QNN 20.407 ms 0 - 3 MB FP16 NPU Use Export Script
EasyOCRRecognizer SA8775P ADP SA8775P TFLITE 415.153 ms 6 - 14 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer SA8775P ADP SA8775P QNN 29.021 ms 0 - 7 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS8275 (Proxy) QCS8275 Proxy TFLITE 565.404 ms 9 - 17 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS8275 (Proxy) QCS8275 Proxy QNN 285.155 ms 0 - 8 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS8550 (Proxy) QCS8550 Proxy TFLITE 108.193 ms 7 - 10 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS8550 (Proxy) QCS8550 Proxy QNN 20.315 ms 0 - 3 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS9075 (Proxy) QCS9075 Proxy TFLITE 415.153 ms 6 - 14 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS9075 (Proxy) QCS9075 Proxy QNN 29.021 ms 0 - 7 MB FP16 NPU Use Export Script
EasyOCRRecognizer QCS8450 (Proxy) QCS8450 Proxy TFLITE 210.333 ms 9 - 25 MB FP32 CPU EasyOCR.tflite
EasyOCRRecognizer QCS8450 (Proxy) QCS8450 Proxy QNN 34.309 ms 0 - 151 MB FP16 NPU Use Export Script
EasyOCRRecognizer Snapdragon X Elite CRD Snapdragon® X Elite QNN 21.364 ms 0 - 0 MB FP16 NPU Use Export Script
EasyOCRRecognizer Snapdragon X Elite CRD Snapdragon® X Elite ONNX 19.37 ms 0 - 0 MB FP16 NPU EasyOCR.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[easyocr]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.easyocr.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.easyocr.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.easyocr.export
Profiling Results
------------------------------------------------------------
EasyOCRDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 41.2                   
Estimated peak memory usage (MB): [0, 136]               
Total # Ops                     : 42                     
Compute Unit(s)                 : NPU (42 ops)           

------------------------------------------------------------
EasyOCRRecognizer
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 109.8                  
Estimated peak memory usage (MB): [6, 8]                 
Total # Ops                     : 136                    
Compute Unit(s)                 : CPU (136 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.easyocr import Model

# Load the model
model = Model.from_pretrained()
detector_model = model.detector
recognizer_model = model.recognizer

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
detector_input_shape = detector_model.get_input_spec()
detector_sample_inputs = detector_model.sample_inputs()

traced_detector_model = torch.jit.trace(detector_model, [torch.tensor(data[0]) for _, data in detector_sample_inputs.items()])

# Compile model on a specific device
detector_compile_job = hub.submit_compile_job(
    model=traced_detector_model ,
    device=device,
    input_specs=detector_model.get_input_spec(),
)

# Get target model to run on-device
detector_target_model = detector_compile_job.get_target_model()
# Trace model
recognizer_input_shape = recognizer_model.get_input_spec()
recognizer_sample_inputs = recognizer_model.sample_inputs()

traced_recognizer_model = torch.jit.trace(recognizer_model, [torch.tensor(data[0]) for _, data in recognizer_sample_inputs.items()])

# Compile model on a specific device
recognizer_compile_job = hub.submit_compile_job(
    model=traced_recognizer_model ,
    device=device,
    input_specs=recognizer_model.get_input_spec(),
)

# Get target model to run on-device
recognizer_target_model = recognizer_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

detector_profile_job = hub.submit_profile_job(
    model=detector_target_model,
    device=device,
)
recognizer_profile_job = hub.submit_profile_job(
    model=recognizer_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

detector_input_data = detector_model.sample_inputs()
detector_inference_job = hub.submit_inference_job(
    model=detector_target_model,
    device=device,
    inputs=detector_input_data,
)
detector_inference_job.download_output_data()
recognizer_input_data = recognizer_model.sample_inputs()
recognizer_inference_job = hub.submit_inference_job(
    model=recognizer_target_model,
    device=device,
    inputs=recognizer_input_data,
)
recognizer_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on EasyOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of EasyOCR can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-to-text models for pytorch library.