FFNet-122NS-LowRes: Optimized for Mobile Deployment
Semantic segmentation for automotive street scenes
FFNet-122NS-LowRes is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
This model is an implementation of FFNet-122NS-LowRes found here.
This repository provides scripts to run FFNet-122NS-LowRes on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: ffnet122NS_CCC_cityscapes_state_dict_quarts_pre_down
- Input resolution: 1024x512
- Number of output classes: 19
- Number of parameters: 32.1M
- Model size (float): 123 MB
- Model size (w8a8): 31.3 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
FFNet-122NS-LowRes | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 216.102 ms | 0 - 56 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 38.241 ms | 6 - 35 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 15.302 ms | 0 - 120 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 21.879 ms | 3 - 43 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 12.288 ms | 0 - 51 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 11.523 ms | 6 - 17 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 15.563 ms | 1 - 61 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 14.613 ms | 0 - 29 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 216.102 ms | 0 - 56 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 38.241 ms | 6 - 35 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 12.29 ms | 1 - 13 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 11.587 ms | 8 - 17 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 17.586 ms | 1 - 56 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 16.754 ms | 4 - 32 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 12.429 ms | 0 - 38 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 11.561 ms | 6 - 19 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 15.563 ms | 1 - 61 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 14.613 ms | 0 - 29 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 12.262 ms | 1 - 19 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 11.535 ms | 6 - 18 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 8.998 ms | 0 - 132 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 8.438 ms | 1 - 117 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 8.009 ms | 6 - 49 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.788 ms | 7 - 62 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 8.67 ms | 0 - 65 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 7.701 ms | 6 - 40 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.375 ms | 7 - 47 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 17.025 ms | 97 - 97 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.083 ms | 57 - 57 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 6.464 ms | 0 - 36 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 9.313 ms | 2 - 39 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.211 ms | 0 - 96 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 6.239 ms | 2 - 91 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.836 ms | 0 - 192 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.486 ms | 2 - 161 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3.297 ms | 0 - 37 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.922 ms | 2 - 40 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 9.491 ms | 0 - 70 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 19.867 ms | 0 - 68 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 65.837 ms | 12 - 24 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 6.464 ms | 0 - 36 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 9.313 ms | 2 - 39 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.859 ms | 0 - 189 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.48 ms | 1 - 170 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.119 ms | 0 - 40 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 6.056 ms | 2 - 43 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.859 ms | 0 - 190 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.481 ms | 1 - 172 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3.297 ms | 0 - 37 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.922 ms | 2 - 40 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.859 ms | 0 - 6 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.486 ms | 1 - 170 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 12.773 ms | 13 - 44 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.05 ms | 0 - 93 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.191 ms | 2 - 92 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 10.808 ms | 11 - 363 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.694 ms | 0 - 35 MB | NPU | FFNet-122NS-LowRes.tflite |
FFNet-122NS-LowRes | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.562 ms | 2 - 45 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 8.245 ms | 11 - 569 MB | NPU | FFNet-122NS-LowRes.onnx |
FFNet-122NS-LowRes | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 6.31 ms | 167 - 167 MB | NPU | FFNet-122NS-LowRes.dlc |
FFNet-122NS-LowRes | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 15.306 ms | 31 - 31 MB | NPU | FFNet-122NS-LowRes.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[ffnet-122ns-lowres]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ffnet_122ns_lowres.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_122ns_lowres.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ffnet_122ns_lowres.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.ffnet_122ns_lowres import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ffnet_122ns_lowres.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_122ns_lowres.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on FFNet-122NS-LowRes's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of FFNet-122NS-LowRes can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 31