LeViT: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

LeViT is a vision transformer model that can classify images from the Imagenet dataset.

This model is an implementation of LeViT found here.

This repository provides scripts to run LeViT on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Image classification
  • Model Stats:
    • Model checkpoint: LeViT-128S
    • Input resolution: 224x224
    • Number of parameters: 7.82M
    • Model size: 29.9 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
LeViT Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 1.364 ms 0 - 49 MB FP16 NPU LeViT.tflite
LeViT Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 1.332 ms 1 - 4 MB FP16 NPU LeViT.so
LeViT Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 2.082 ms 0 - 53 MB FP16 NPU LeViT.onnx
LeViT Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.971 ms 0 - 26 MB FP16 NPU LeViT.tflite
LeViT Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.932 ms 0 - 15 MB FP16 NPU LeViT.so
LeViT Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 1.403 ms 1 - 35 MB FP16 NPU LeViT.onnx
LeViT Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.995 ms 0 - 30 MB FP16 NPU LeViT.tflite
LeViT Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.876 ms 1 - 22 MB FP16 NPU Use Export Script
LeViT Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 1.471 ms 1 - 28 MB FP16 NPU LeViT.onnx
LeViT QCS8275 (Proxy) QCS8275 Proxy TFLITE 14.104 ms 0 - 18 MB FP16 NPU LeViT.tflite
LeViT QCS8275 (Proxy) QCS8275 Proxy QNN 11.532 ms 1 - 8 MB FP16 NPU Use Export Script
LeViT QCS8550 (Proxy) QCS8550 Proxy TFLITE 1.369 ms 0 - 59 MB FP16 NPU LeViT.tflite
LeViT QCS8550 (Proxy) QCS8550 Proxy QNN 1.325 ms 1 - 3 MB FP16 NPU Use Export Script
LeViT QCS9075 (Proxy) QCS9075 Proxy TFLITE 2.174 ms 0 - 18 MB FP16 NPU LeViT.tflite
LeViT QCS9075 (Proxy) QCS9075 Proxy QNN 2.24 ms 1 - 7 MB FP16 NPU Use Export Script
LeViT QCS8450 (Proxy) QCS8450 Proxy TFLITE 1.634 ms 0 - 24 MB FP16 NPU LeViT.tflite
LeViT QCS8450 (Proxy) QCS8450 Proxy QNN 1.653 ms 1 - 26 MB FP16 NPU Use Export Script
LeViT Snapdragon X Elite CRD Snapdragon® X Elite QNN 1.516 ms 1 - 1 MB FP16 NPU Use Export Script
LeViT Snapdragon X Elite CRD Snapdragon® X Elite ONNX 2.12 ms 18 - 18 MB FP16 NPU LeViT.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[levit]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.levit.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.levit.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.levit.export
Profiling Results
------------------------------------------------------------
LeViT
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 1.4                    
Estimated peak memory usage (MB): [0, 49]                
Total # Ops                     : 306                    
Compute Unit(s)                 : NPU (306 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.levit import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.levit.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.levit.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on LeViT's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of LeViT can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-classification models for pytorch library.