MediaPipe-Pose-Estimation: Optimized for Mobile Deployment

Detect and track human body poses in real-time images and video streams

The MediaPipe Pose Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of poses in an image.

This model is an implementation of MediaPipe-Pose-Estimation found here.

This repository provides scripts to run MediaPipe-Pose-Estimation on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Pose estimation
  • Model Stats:
    • Input resolution: 256x256
    • Number of parameters (MediaPipePoseDetector): 815K
    • Model size (MediaPipePoseDetector): 3.14 MB
    • Number of parameters (MediaPipePoseLandmarkDetector): 3.37M
    • Model size (MediaPipePoseLandmarkDetector): 12.9 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
MediaPipePoseDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.781 ms 0 - 23 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.822 ms 0 - 2 MB FP16 NPU MediaPipe-Pose-Estimation.so
MediaPipePoseDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 1.016 ms 0 - 12 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.565 ms 0 - 24 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.606 ms 0 - 19 MB FP16 NPU MediaPipe-Pose-Estimation.so
MediaPipePoseDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.715 ms 0 - 31 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.464 ms 0 - 21 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.617 ms 0 - 20 MB FP16 NPU Use Export Script
MediaPipePoseDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.637 ms 0 - 24 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseDetector SA7255P ADP SA7255P TFLITE 37.884 ms 0 - 12 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector SA7255P ADP SA7255P QNN 38.063 ms 0 - 8 MB FP16 NPU Use Export Script
MediaPipePoseDetector SA8255 (Proxy) SA8255P Proxy TFLITE 0.785 ms 0 - 23 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector SA8255 (Proxy) SA8255P Proxy QNN 0.82 ms 0 - 3 MB FP16 NPU Use Export Script
MediaPipePoseDetector SA8295P ADP SA8295P TFLITE 2.343 ms 0 - 13 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector SA8295P ADP SA8295P QNN 2.774 ms 0 - 11 MB FP16 NPU Use Export Script
MediaPipePoseDetector SA8650 (Proxy) SA8650P Proxy TFLITE 0.781 ms 0 - 13 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector SA8650 (Proxy) SA8650P Proxy QNN 0.826 ms 0 - 3 MB FP16 NPU Use Export Script
MediaPipePoseDetector SA8775P ADP SA8775P TFLITE 1.786 ms 0 - 12 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector SA8775P ADP SA8775P QNN 1.994 ms 0 - 7 MB FP16 NPU Use Export Script
MediaPipePoseDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 37.884 ms 0 - 12 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector QCS8275 (Proxy) QCS8275 Proxy QNN 38.063 ms 0 - 8 MB FP16 NPU Use Export Script
MediaPipePoseDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.775 ms 0 - 23 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector QCS8550 (Proxy) QCS8550 Proxy QNN 0.823 ms 0 - 3 MB FP16 NPU Use Export Script
MediaPipePoseDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 1.786 ms 0 - 12 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector QCS9075 (Proxy) QCS9075 Proxy QNN 1.994 ms 0 - 7 MB FP16 NPU Use Export Script
MediaPipePoseDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 1.902 ms 0 - 26 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseDetector QCS8450 (Proxy) QCS8450 Proxy QNN 1.965 ms 0 - 20 MB FP16 NPU Use Export Script
MediaPipePoseDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.964 ms 0 - 0 MB FP16 NPU Use Export Script
MediaPipePoseDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.044 ms 4 - 4 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.814 ms 0 - 44 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.905 ms 1 - 3 MB FP16 NPU MediaPipe-Pose-Estimation.so
MediaPipePoseLandmarkDetector Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 1.378 ms 0 - 42 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.597 ms 0 - 28 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.66 ms 0 - 15 MB FP16 NPU MediaPipe-Pose-Estimation.so
MediaPipePoseLandmarkDetector Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.951 ms 1 - 39 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.62 ms 0 - 31 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.624 ms 1 - 27 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.902 ms 1 - 37 MB FP16 NPU MediaPipe-Pose-Estimation.onnx
MediaPipePoseLandmarkDetector SA7255P ADP SA7255P TFLITE 17.146 ms 0 - 18 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector SA7255P ADP SA7255P QNN 17.57 ms 1 - 8 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector SA8255 (Proxy) SA8255P Proxy TFLITE 0.788 ms 0 - 9 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector SA8255 (Proxy) SA8255P Proxy QNN 0.91 ms 1 - 3 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector SA8295P ADP SA8295P TFLITE 1.421 ms 0 - 18 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector SA8295P ADP SA8295P QNN 1.635 ms 0 - 11 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector SA8650 (Proxy) SA8650P Proxy TFLITE 0.837 ms 0 - 44 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector SA8650 (Proxy) SA8650P Proxy QNN 0.886 ms 1 - 3 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector SA8775P ADP SA8775P TFLITE 1.633 ms 0 - 18 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector SA8775P ADP SA8775P QNN 1.89 ms 1 - 8 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector QCS8275 (Proxy) QCS8275 Proxy TFLITE 17.146 ms 0 - 18 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector QCS8275 (Proxy) QCS8275 Proxy QNN 17.57 ms 1 - 8 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.816 ms 0 - 44 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector QCS8550 (Proxy) QCS8550 Proxy QNN 0.907 ms 1 - 3 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector QCS9075 (Proxy) QCS9075 Proxy TFLITE 1.633 ms 0 - 18 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector QCS9075 (Proxy) QCS9075 Proxy QNN 1.89 ms 1 - 8 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector QCS8450 (Proxy) QCS8450 Proxy TFLITE 1.003 ms 0 - 22 MB FP16 NPU MediaPipe-Pose-Estimation.tflite
MediaPipePoseLandmarkDetector QCS8450 (Proxy) QCS8450 Proxy QNN 1.098 ms 1 - 20 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector Snapdragon X Elite CRD Snapdragon® X Elite QNN 1.164 ms 1 - 1 MB FP16 NPU Use Export Script
MediaPipePoseLandmarkDetector Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.411 ms 9 - 9 MB FP16 NPU MediaPipe-Pose-Estimation.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.mediapipe_pose.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.mediapipe_pose.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mediapipe_pose.export
Profiling Results
------------------------------------------------------------
MediaPipePoseDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.8                    
Estimated peak memory usage (MB): [0, 23]                
Total # Ops                     : 106                    
Compute Unit(s)                 : NPU (106 ops)          

------------------------------------------------------------
MediaPipePoseLandmarkDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.8                    
Estimated peak memory usage (MB): [0, 44]                
Total # Ops                     : 219                    
Compute Unit(s)                 : NPU (219 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.mediapipe_pose import Model

# Load the model
model = Model.from_pretrained()
pose_detector_model = model.pose_detector
pose_landmark_detector_model = model.pose_landmark_detector

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
pose_detector_input_shape = pose_detector_model.get_input_spec()
pose_detector_sample_inputs = pose_detector_model.sample_inputs()

traced_pose_detector_model = torch.jit.trace(pose_detector_model, [torch.tensor(data[0]) for _, data in pose_detector_sample_inputs.items()])

# Compile model on a specific device
pose_detector_compile_job = hub.submit_compile_job(
    model=traced_pose_detector_model ,
    device=device,
    input_specs=pose_detector_model.get_input_spec(),
)

# Get target model to run on-device
pose_detector_target_model = pose_detector_compile_job.get_target_model()
# Trace model
pose_landmark_detector_input_shape = pose_landmark_detector_model.get_input_spec()
pose_landmark_detector_sample_inputs = pose_landmark_detector_model.sample_inputs()

traced_pose_landmark_detector_model = torch.jit.trace(pose_landmark_detector_model, [torch.tensor(data[0]) for _, data in pose_landmark_detector_sample_inputs.items()])

# Compile model on a specific device
pose_landmark_detector_compile_job = hub.submit_compile_job(
    model=traced_pose_landmark_detector_model ,
    device=device,
    input_specs=pose_landmark_detector_model.get_input_spec(),
)

# Get target model to run on-device
pose_landmark_detector_target_model = pose_landmark_detector_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

pose_detector_profile_job = hub.submit_profile_job(
    model=pose_detector_target_model,
    device=device,
)
pose_landmark_detector_profile_job = hub.submit_profile_job(
    model=pose_landmark_detector_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

pose_detector_input_data = pose_detector_model.sample_inputs()
pose_detector_inference_job = hub.submit_inference_job(
    model=pose_detector_target_model,
    device=device,
    inputs=pose_detector_input_data,
)
pose_detector_inference_job.download_output_data()
pose_landmark_detector_input_data = pose_landmark_detector_model.sample_inputs()
pose_landmark_detector_inference_job = hub.submit_inference_job(
    model=pose_landmark_detector_target_model,
    device=device,
    inputs=pose_landmark_detector_input_data,
)
pose_landmark_detector_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on MediaPipe-Pose-Estimation's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of MediaPipe-Pose-Estimation can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support keypoint-detection models for pytorch library.