YOLOv10-Detection: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge by Ultralytics

Ultralytics YOLOv10 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv10-Detection found here.

This repository provides scripts to run YOLOv10-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.

WARNING: The model assets are not readily available for download due to licensing restrictions.

Model Details

  • Model Type: Model_use_case.object_detection
  • Model Stats:
    • Model checkpoint: YOLOv10-N
    • Input resolution: 640x640
    • Number of parameters: 2.33M
    • Model size (float): 8.95 MB
    • Model size (w8a8): 2.55 MB
    • Model size (w8a16): 3.04 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
YOLOv10-Detection float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 16.29 ms 0 - 41 MB NPU --
YOLOv10-Detection float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 12.906 ms 1 - 99 MB NPU --
YOLOv10-Detection float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 9.095 ms 0 - 40 MB NPU --
YOLOv10-Detection float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 9.1 ms 5 - 45 MB NPU --
YOLOv10-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 6.01 ms 0 - 19 MB NPU --
YOLOv10-Detection float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 3.942 ms 0 - 72 MB NPU --
YOLOv10-Detection float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 7.407 ms 0 - 41 MB NPU --
YOLOv10-Detection float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 5.461 ms 2 - 104 MB NPU --
YOLOv10-Detection float SA7255P ADP Qualcomm® SA7255P TFLITE 16.29 ms 0 - 41 MB NPU --
YOLOv10-Detection float SA7255P ADP Qualcomm® SA7255P QNN_DLC 12.906 ms 1 - 99 MB NPU --
YOLOv10-Detection float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 6.023 ms 0 - 19 MB NPU --
YOLOv10-Detection float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 3.978 ms 0 - 59 MB NPU --
YOLOv10-Detection float SA8295P ADP Qualcomm® SA8295P TFLITE 10.425 ms 0 - 27 MB NPU --
YOLOv10-Detection float SA8295P ADP Qualcomm® SA8295P QNN_DLC 8.267 ms 3 - 37 MB NPU --
YOLOv10-Detection float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 6.115 ms 0 - 19 MB NPU --
YOLOv10-Detection float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 3.966 ms 0 - 61 MB NPU --
YOLOv10-Detection float SA8775P ADP Qualcomm® SA8775P TFLITE 7.407 ms 0 - 41 MB NPU --
YOLOv10-Detection float SA8775P ADP Qualcomm® SA8775P QNN_DLC 5.461 ms 2 - 104 MB NPU --
YOLOv10-Detection float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 6.029 ms 0 - 10 MB NPU --
YOLOv10-Detection float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 3.953 ms 0 - 67 MB NPU --
YOLOv10-Detection float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 5.742 ms 0 - 82 MB NPU --
YOLOv10-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 4.365 ms 0 - 57 MB NPU --
YOLOv10-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.794 ms 5 - 215 MB NPU --
YOLOv10-Detection float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.167 ms 0 - 162 MB NPU --
YOLOv10-Detection float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 3.46 ms 0 - 47 MB NPU --
YOLOv10-Detection float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 2.668 ms 5 - 133 MB NPU --
YOLOv10-Detection float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.602 ms 5 - 88 MB NPU --
YOLOv10-Detection float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.592 ms 5 - 5 MB NPU --
YOLOv10-Detection float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.195 ms 5 - 5 MB NPU --
YOLOv10-Detection w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 7.54 ms 2 - 35 MB NPU --
YOLOv10-Detection w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 4.733 ms 2 - 41 MB NPU --
YOLOv10-Detection w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.037 ms 2 - 14 MB NPU --
YOLOv10-Detection w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 4.662 ms 2 - 36 MB NPU --
YOLOv10-Detection w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 13.307 ms 2 - 38 MB NPU --
YOLOv10-Detection w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 7.54 ms 2 - 35 MB NPU --
YOLOv10-Detection w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.051 ms 2 - 15 MB NPU --
YOLOv10-Detection w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 5.358 ms 2 - 37 MB NPU --
YOLOv10-Detection w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.034 ms 2 - 14 MB NPU --
YOLOv10-Detection w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 4.662 ms 2 - 36 MB NPU --
YOLOv10-Detection w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 4.053 ms 2 - 14 MB NPU --
YOLOv10-Detection w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 11.693 ms 1 - 36 MB NPU --
YOLOv10-Detection w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.714 ms 2 - 44 MB NPU --
YOLOv10-Detection w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 8.689 ms 2 - 153 MB NPU --
YOLOv10-Detection w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 2.292 ms 2 - 39 MB NPU --
YOLOv10-Detection w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 8.067 ms 2 - 87 MB NPU --
YOLOv10-Detection w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.658 ms 20 - 20 MB NPU --
YOLOv10-Detection w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 12.651 ms 2 - 2 MB NPU --
YOLOv10-Detection w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 3.681 ms 0 - 24 MB NPU --
YOLOv10-Detection w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 3.715 ms 1 - 27 MB NPU --
YOLOv10-Detection w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 2.049 ms 0 - 40 MB NPU --
YOLOv10-Detection w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.085 ms 1 - 35 MB NPU --
YOLOv10-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.821 ms 0 - 14 MB NPU --
YOLOv10-Detection w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.825 ms 1 - 13 MB NPU --
YOLOv10-Detection w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 2.282 ms 0 - 25 MB NPU --
YOLOv10-Detection w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.259 ms 1 - 29 MB NPU --
YOLOv10-Detection w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 4.132 ms 0 - 31 MB NPU --
YOLOv10-Detection w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 5.391 ms 1 - 33 MB NPU --
YOLOv10-Detection w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 64.773 ms 2 - 12 MB NPU --
YOLOv10-Detection w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 3.681 ms 0 - 24 MB NPU --
YOLOv10-Detection w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 3.715 ms 1 - 27 MB NPU --
YOLOv10-Detection w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.829 ms 0 - 13 MB NPU --
YOLOv10-Detection w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.828 ms 1 - 14 MB NPU --
YOLOv10-Detection w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 2.635 ms 0 - 27 MB NPU --
YOLOv10-Detection w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.611 ms 1 - 31 MB NPU --
YOLOv10-Detection w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.83 ms 0 - 14 MB NPU --
YOLOv10-Detection w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.826 ms 1 - 12 MB NPU --
YOLOv10-Detection w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 2.282 ms 0 - 25 MB NPU --
YOLOv10-Detection w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.259 ms 1 - 29 MB NPU --
YOLOv10-Detection w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 1.837 ms 0 - 13 MB NPU --
YOLOv10-Detection w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 1.831 ms 1 - 14 MB NPU --
YOLOv10-Detection w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 6.805 ms 0 - 32 MB NPU --
YOLOv10-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.214 ms 0 - 35 MB NPU --
YOLOv10-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.241 ms 1 - 36 MB NPU --
YOLOv10-Detection w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 5.009 ms 1 - 81 MB NPU --
YOLOv10-Detection w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 1.115 ms 0 - 28 MB NPU --
YOLOv10-Detection w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 1.087 ms 1 - 34 MB NPU --
YOLOv10-Detection w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.538 ms 1 - 83 MB NPU --
YOLOv10-Detection w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 2.155 ms 11 - 11 MB NPU --
YOLOv10-Detection w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 7.466 ms 1 - 1 MB NPU --

Installation

Install the package via pip:

pip install "qai-hub-models[yolov10-det]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.yolov10_det.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov10_det.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov10_det.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.yolov10_det import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.yolov10_det.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov10_det.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on YOLOv10-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of YOLOv10-Detection can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support