Yolo-v7 / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
4a15a7d verified
metadata
library_name: pytorch
license: gpl-3.0
tags:
  - real_time
  - android
pipeline_tag: object-detection

Yolo-v7: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v7 found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloV7 Tiny
    • Input resolution: 640x640
    • Number of parameters: 6.39M
    • Model size: 24.4 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-v7 Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 15.365 ms 1 - 18 MB FP16 NPU --
Yolo-v7 Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 10.581 ms 5 - 7 MB FP16 NPU --
Yolo-v7 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 12.474 ms 2 - 62 MB FP16 NPU --
Yolo-v7 Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 10.257 ms 0 - 46 MB FP16 NPU --
Yolo-v7 Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 6.927 ms 5 - 24 MB FP16 NPU --
Yolo-v7 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 8.417 ms 7 - 73 MB FP16 NPU --
Yolo-v7 Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 10.701 ms 1 - 45 MB FP16 NPU --
Yolo-v7 Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 7.098 ms 5 - 72 MB FP16 NPU --
Yolo-v7 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 8.23 ms 5 - 63 MB FP16 NPU --
Yolo-v7 SA7255P ADP SA7255P TFLITE 107.906 ms 1 - 38 MB FP16 NPU --
Yolo-v7 SA7255P ADP SA7255P QNN 100.592 ms 0 - 7 MB FP16 NPU --
Yolo-v7 SA8255 (Proxy) SA8255P Proxy TFLITE 15.294 ms 1 - 22 MB FP16 NPU --
Yolo-v7 SA8255 (Proxy) SA8255P Proxy QNN 10.44 ms 5 - 7 MB FP16 NPU --
Yolo-v7 SA8295P ADP SA8295P TFLITE 19.717 ms 1 - 41 MB FP16 NPU --
Yolo-v7 SA8295P ADP SA8295P QNN 13.339 ms 0 - 11 MB FP16 NPU --
Yolo-v7 SA8650 (Proxy) SA8650P Proxy TFLITE 15.172 ms 1 - 19 MB FP16 NPU --
Yolo-v7 SA8650 (Proxy) SA8650P Proxy QNN 10.411 ms 5 - 7 MB FP16 NPU --
Yolo-v7 SA8775P ADP SA8775P TFLITE 20.463 ms 1 - 39 MB FP16 NPU --
Yolo-v7 SA8775P ADP SA8775P QNN 14.809 ms 1 - 8 MB FP16 NPU --
Yolo-v7 QCS8275 (Proxy) QCS8275 Proxy TFLITE 107.906 ms 1 - 38 MB FP16 NPU --
Yolo-v7 QCS8275 (Proxy) QCS8275 Proxy QNN 100.592 ms 0 - 7 MB FP16 NPU --
Yolo-v7 QCS8550 (Proxy) QCS8550 Proxy TFLITE 15.317 ms 1 - 22 MB FP16 NPU --
Yolo-v7 QCS8550 (Proxy) QCS8550 Proxy QNN 10.404 ms 5 - 7 MB FP16 NPU --
Yolo-v7 QCS9075 (Proxy) QCS9075 Proxy TFLITE 20.463 ms 1 - 39 MB FP16 NPU --
Yolo-v7 QCS9075 (Proxy) QCS9075 Proxy QNN 14.809 ms 1 - 8 MB FP16 NPU --
Yolo-v7 QCS8450 (Proxy) QCS8450 Proxy TFLITE 17.742 ms 1 - 52 MB FP16 NPU --
Yolo-v7 QCS8450 (Proxy) QCS8450 Proxy QNN 12.669 ms 5 - 63 MB FP16 NPU --
Yolo-v7 Snapdragon X Elite CRD Snapdragon® X Elite QNN 10.965 ms 5 - 5 MB FP16 NPU --
Yolo-v7 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 14.241 ms 10 - 10 MB FP16 NPU --

License

  • The license for the original implementation of Yolo-v7 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation