layoutlmv2-er-ner / README.md
renjithks's picture
update model card README.md
1b29230
|
raw
history blame
3.27 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv2-er-ner
    results: []

layoutlmv2-er-ner

This model is a fine-tuned version of renjithks/layoutlmv2-cord-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1780
  • Precision: 0.7176
  • Recall: 0.6953
  • F1: 0.7063
  • Accuracy: 0.9598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 22 0.5501 0.0 0.0 0.0 0.8801
No log 2.0 44 0.5444 0.0 0.0 0.0 0.8801
No log 3.0 66 0.5355 0.0 0.0 0.0 0.8801
No log 4.0 88 0.4321 0.1621 0.1171 0.1360 0.8671
No log 5.0 110 0.2968 0.5475 0.3738 0.4443 0.9329
No log 6.0 132 0.2926 0.5430 0.3117 0.3961 0.9256
No log 7.0 154 0.2200 0.5812 0.5402 0.5599 0.9452
No log 8.0 176 0.2156 0.6235 0.5021 0.5563 0.9480
No log 9.0 198 0.2202 0.5691 0.5924 0.5805 0.9464
No log 10.0 220 0.1934 0.6299 0.6361 0.6330 0.9537
No log 11.0 242 0.1860 0.6737 0.6756 0.6746 0.9549
No log 12.0 264 0.1840 0.7007 0.6770 0.6887 0.9596
No log 13.0 286 0.1925 0.6709 0.6756 0.6732 0.9579
No log 14.0 308 0.1763 0.7267 0.6939 0.7100 0.9604
No log 15.0 330 0.1850 0.7134 0.6671 0.6895 0.9577
No log 16.0 352 0.1771 0.6936 0.6897 0.6917 0.9587
No log 17.0 374 0.1767 0.7044 0.7024 0.7034 0.9592
No log 18.0 396 0.1739 0.7348 0.6996 0.7168 0.9610
No log 19.0 418 0.1778 0.7224 0.7010 0.7115 0.9600
No log 20.0 440 0.1780 0.7176 0.6953 0.7063 0.9598

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.9.0+cu111
  • Datasets 1.18.4
  • Tokenizers 0.11.6