flanT5_Task1

This model is a fine-tuned version of google/flan-t5-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6498
  • Accuracy: 0.8047
  • Precision: 0.8229
  • Recall: 0.7765
  • F1 score: 0.7990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 score Precision Recall Validation Loss
1.0024 0.4205 2500 0.76 0.7530 0.7756 0.7318 0.8479
1.0808 0.8410 5000 0.7553 0.7620 0.7416 0.7835 0.8954
1.0927 1.2616 7500 0.7682 0.7411 0.8393 0.6635 1.0011
0.8823 1.6821 10000 0.7847 0.7738 0.8151 0.7365 0.8913
0.8154 2.1026 12500 0.7929 0.7822 0.8251 0.7435 0.8291
0.6981 2.5231 15000 0.9793 0.7929 0.8152 0.7576 0.7854
0.6452 2.9437 17500 0.9164 0.8035 0.8564 0.7294 0.7878
0.4567 3.3642 20000 1.0961 0.8153 0.8418 0.7765 0.8078
0.4245 3.7847 22500 1.2257 0.8153 0.8268 0.7976 0.8120
0.3159 4.2052 25000 1.4984 0.8047 0.8047 0.8047 0.8047
0.2152 4.6257 27500 1.6498 0.8047 0.8229 0.7765 0.7990

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
26
Safetensors
Model size
751M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for rishavranaut/flanT5_Task1

Finetuned
(120)
this model