Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
# optionally might have model_type or tokenizer_type
# model_type: AutoModelForCausalLM
# tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: improver/length_human_train.jsonl
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: /data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo

sequence_len: 4096
sample_packing: false
pad_to_sequence_len:

adapter: qlora
lora_model_dir:
lora_r: 16
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: "DeepSeek-R1-Distill-Qwen-1.5B_demo"
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00005

train_on_inputs: false
group_by_length: true
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo/checkpoint-344
local_rank:
logging_steps: 10
xformers_attention:
flash_attention:

warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 256
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

data/user_data/riyaza/saved_models/DeepSeek-R1-Distill-Qwen-1.5B_demo

This model is a fine-tuned version of deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B on the improver/length_human_train.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.4873 0.9971 172 0.2755
0.3758 1.9913 344 0.2677
0.3732 2.9971 516 0.2708

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
35
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for riyazahuja/DeepSeek-R1-Distill-Qwen-1.5B_demo

Adapter
(26)
this model