distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1443
- Accuracy: {'accuracy': 0.898}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.3596 | {'accuracy': 0.88} |
0.4442 | 2.0 | 500 | 0.4824 | {'accuracy': 0.867} |
0.4442 | 3.0 | 750 | 0.5480 | {'accuracy': 0.895} |
0.2096 | 4.0 | 1000 | 0.6805 | {'accuracy': 0.887} |
0.2096 | 5.0 | 1250 | 0.9621 | {'accuracy': 0.887} |
0.0618 | 6.0 | 1500 | 0.9738 | {'accuracy': 0.885} |
0.0618 | 7.0 | 1750 | 1.0855 | {'accuracy': 0.897} |
0.0377 | 8.0 | 2000 | 1.0957 | {'accuracy': 0.899} |
0.0377 | 9.0 | 2250 | 1.1224 | {'accuracy': 0.897} |
0.0059 | 10.0 | 2500 | 1.1443 | {'accuracy': 0.898} |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cpu
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 23
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for rvrj/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased