|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: albert/albert-base-v2 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: classiv1_albert_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# classiv1_albert_model |
|
|
|
This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1577 |
|
- Train Accuracy: 0.9334 |
|
- Validation Loss: 0.2818 |
|
- Validation Accuracy: 0.8990 |
|
- Epoch: 3 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(3e-05), 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.9344 | 0.6647 | 0.4468 | 0.8440 | 0 | |
|
| 0.2788 | 0.9076 | 0.2503 | 0.9170 | 1 | |
|
| 0.1689 | 0.9293 | 0.2698 | 0.9110 | 2 | |
|
| 0.1577 | 0.9334 | 0.2818 | 0.8990 | 3 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.52.4 |
|
- TensorFlow 2.19.0 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|