SentenceTransformer based on microsoft/mpnet-base

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sahithkumar7/final-mpnet-base-fullfinetuned-epoch5")
# Run inference
sentences = [
    'What is the number of genes obtained from comparing control and LIPUS-stimulated samples?',
    'Differentially expressed genes (DEGs) were obtained\nbetween control and LIPUS-stimulated samples using\nan adjusted P<0.05 and|log2FC| > 1 as cutoffs to define\nstatistically significant differential expression. 676 genes\nwere obtained from which 578 were upregulated when\nstimulated with LIPUS and 98 genes were subregulated\n(Supp. Figure 1). To further understand the functions\nand pathways associated with the differentially expressed\ngenes (DEG), Gene Ontology (GO) and Kyoto Encyclo-\npedia of Genes and Genomes (KEGG) analyses were con-\nducted using the DAVID database [37, 38].',
    'independent studies have shown a raising trend in both cancer incidence [2] and a high-salt\ndietary lifestyle [7], there is no direct correlation between dietary salt intake and breast\ncancer. Interestingly, in the human body, certain organs such as the skin and lymph nodes\nhave a natural tendency to accumulate salt [8]. Although unknown, the pathophysiological\nsignificance of this selective accumulation of sodium in certain organs and solid tumors is\nan area of intense research.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000,  0.6568, -0.0120],
#         [ 0.6568,  1.0000, -0.0343],
#         [-0.0120, -0.0343,  1.0000]])

Evaluation

Metrics

Triplet

Metric initial_test final_test
cosine_accuracy 0.98 0.98

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 800 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 800 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 16.79 tokens
    • max: 39 tokens
    • min: 39 tokens
    • mean: 117.74 tokens
    • max: 265 tokens
    • min: 40 tokens
    • mean: 116.14 tokens
    • max: 356 tokens
  • Samples:
    anchor positive negative
    What is the limitation of FBG-based sensors in tactile feedback? Furthermore, FBG-based 3-axis tactile sensors have been
    proposed for a more comprehensive haptic perception tool
    in surgeries (Figure 1D) (16). Five optical fibers merged
    with FBG sensors are suspended in a deformable medium
    and measure the compression or tension of the tissue as the
    sensors are pressed against it, returning a _ surface
    reaction map. While FBG-based sensors are small, flexible, and
    sensitive, there are several challenges that need to be
    addressed for optimal performance for tactile feedback. These
    sensors are temperature sensitive, requiring temperature
    141]. Therefore, it is not known to what extent spared
    axons are remyelinated by transplanted Schwann cells,
    nor is the contribution of this myelin to functional im-
    provements proven. Transplantation of Schwann cells
    incapable of producing myelin, such as cells derived
    from trembler (Pmp22Tr) mutant mice, may be useful
    in establishing a causal relationship between myelin re-
    generation and functional improvements. Several MSC
    transplantations demonstrate an increase of myelin re-
    tention and the number of myelinated axons in the le-
    sion site during a chronic post-injury period [57]. Thus,
    What are the advantages of strain elastography? frontiersin.org

    --- Page 8 ---
    Kumar et al.

    TABLE 2 Modalities of ultrasound elastography.

    Modality
    Strain elastography

    Excitation
    Applied manual compression (38)

    Advantages

    No additional specialized equipment
    required (40)

    10.3389/fmedt.2023.1238129

    Limitations

    Qualitative measurements (39)

    Internal physiological mechanism (42)

    Simple low-cost design (40)

    Applied compression is operator-dependent (51)

    More commonly used (52)

    High inter-observer variability (51)

    coustic radiation force impulse Acoustic radiation force (43)

    (ARFI) imaging

    Image beyond slip boundaries (45)
    Publisher’s Note: MDPI stays neutral
    with regard to jurisdictional claims in
    published maps and institutional afil-

    iations.

    onon)

    Copyright: © 2021 by the author.
    Licensee MDPI, Basel, Switzerland.
    This article is an open access article
    distributed under the terms and
    conditions of the Creative Commons
    Attribution (CC BY) license (https://
    creativecommons.org/licenses/by/
    4.0/).

    Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, 525 East 68th Street,
    Room M-522, Box 130, New York, NY 10065, USA; [email protected] or [email protected]
    What is the material used for the substrate in a piezoelectric element? gain for biomedical applications.

    frontiersin.org

    --- Page 9 ---
    Kumar et al.

    >

    [PMUT ]

    Electrode: Voltage Electrode2

    © piezoelectric elements
    o

    —: OSi02

    ©) silicon substrate

    B [ CMUT ]
    AC DC

    membrane

    —————

    vacuum
    insulator

    substrate

    = ground

    FIGURE 3
    Histopatholo
    Cytology Total, n (%) Benign, n (%) P ey Cancer, n (%)
    FA 2 (15.4%) FTC 2 (25%)
    0 GD (7.7%) PTC 6 (75%)
    I 21 (4.0%) NG 9 (69.2%)
    Other diagnosis (7.7%)
    FA 15 (9.9%) FIC 4 (14.3%)
    FT-UMP (0.7%) MTC 3 (10.7%)
    GD (0.7%) PTC 21 (75%)
    Il 180 (34.5%) OA (0.7%)
    LT (0.7%)
    NG 130 (85.5%)
    NIFTP 2 (1.3%)
    FA 14 (23.7%) FIC 7 (28.0%)
    FI-UMP 2 (3.4%) OTC 1 (4.0%)
    OA (1.7%) PTC 17 (68.0%)
    Il 84 (16.1%) LT 3 (5.1%)
    NG 35 (59.3%)
    NIFTP 2 (3.4%)
    WDT-UMP 2 (3.4%)
    FA 15 (26.3%) OTC 1 (7.7%)
    FT-UMP 5 (8.8%) PTC 12 (92.3%)
    OA 13 (22.8%)
    IV 70 (13.4%) LT 2 (3.5%)
    NG 18 (31.6%)
    NIFTP 2 (3.5%)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 200 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 200 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 17.14 tokens
    • max: 35 tokens
    • min: 40 tokens
    • mean: 121.3 tokens
    • max: 356 tokens
    • min: 45 tokens
    • mean: 119.75 tokens
    • max: 356 tokens
  • Samples:
    anchor positive negative
    What can differentiate into a very wide variety of tissues? lead to decreased rates of graft-versus-host disease. They
    also can differentiate into a very wide variety of tissues. For
    example, when compared with bone marrow stem cells or
    mobilized peripheral blood, umbilical cord blood stem cells
    have a greater repopulating ability.5° Cord blood derived
    CD34+ cells have very potent hematopoietic abilities, and
    this is attributed to the immaturity of the stem cells rela-
    tive to adult derived cells. Studies have been done that an-
    alyze long term survival of children with hematologic dis-
    orders who were transplanted with umbilical cord blood
    metabolic regulation may affect the function of more than one organelle. Therefore, if the
    miR-17-92 regulatory cluster can perturb genes related to mitochondrial metabolic function,
    it could be also related, in some way, to genes involved in lysosomal metabolic function.
    Lysosomes are intracellular organelles that, in form of small vesicles, participate in
    several cellular functions, mainly digestion, but also vesicle trafficking, autophagy, nutrient
    sensing, cellular growth, signaling [85], and even enzyme secretion. The membrane-bound
    What are the two most common types of pluripotent stem cells? III]. AMNIOTIC CELLS AS A SOURCE FOR STEM
    CELLS

    Historically, the two most common types of pluripotent
    stem cells include embryonic stem cells (ESCs) and induced
    pluripotent stem cells (iPSCs).35 However, despite the many
    research efforts to improve ESC and iPSC technologies,
    there are still enormous clinical challenges.°> Two signif-
    icant issues posed by ESC and iPSC technologies include
    low survival rate of transplanted cells and tumorigenicity.°>
    Recently, researchers have isolated pluripotent stem cells
    Explanation: criterion 6 indicates a positive diagnosis only within the DC VI group
    relative to all other categories. Criterion 5 indicates a positive diagnosis within the DCs VI
    and V relative to all other categories.

    The highest positive predictive value (PPV) confirming malignancy through histopatho-
    logical examination for criterion 6 was 0.93, and for criterion 5, it was 0.92. For the subsequent
    criteria, the PPVs were as follows: criterion 4—0.66; criterion 3—0.55; criterion 2—0.40.
    What percentage of stem cells are present in bone marrow? ing 30% in some tissues.43-45 This is a significant difference
    from the .0001-.0002% stem cells present in bone marrow.43
    Given this difference in stem cell concentration between
    the sources, there will be more ADSCs per sample of WAT
    migration of bCSCs. This finding raises the possibil-
    ity that LIPUS may decrease the ability of these cells to
    invade adjacent tissues and start the process of metasta-
    ses. These results also suggested that some of the changes
    induced by LIPUS take longer to be detected in this type
    of 2D migration model, possible due to changes in gene
    expression pattern. To further study this hypothesis, we
    performed a Transwell invasion assay. The data revealed
    a reduced number of cells crossing the membrane after
    LIPUS stimulation, indicating that therapeutic LIPUS
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss initial_test_cosine_accuracy final_test_cosine_accuracy
-1 -1 - - 0.7800 -
0.02 1 3.124 - - -
0.04 2 3.2227 - - -
0.06 3 3.1108 - - -
0.08 4 3.1317 - - -
0.1 5 3.334 - - -
0.12 6 3.0113 - - -
0.14 7 3.1324 - - -
0.16 8 2.9737 - - -
0.18 9 3.06 - - -
0.2 10 3.0135 - - -
0.22 11 2.6313 - - -
0.24 12 2.6668 - - -
0.26 13 3.0152 - - -
0.28 14 2.2725 - - -
0.3 15 2.0777 - - -
0.32 16 2.1797 - - -
0.34 17 1.5419 - - -
0.36 18 1.5243 - - -
0.38 19 1.9736 - - -
0.4 20 1.3789 1.1273 0.9200 -
0.42 21 1.3214 - - -
0.44 22 1.1415 - - -
0.46 23 1.2763 - - -
0.48 24 1.2017 - - -
0.5 25 0.8564 - - -
0.52 26 1.1946 - - -
0.54 27 0.6691 - - -
0.56 28 1.0806 - - -
0.58 29 0.9866 - - -
0.6 30 0.6018 - - -
0.62 31 0.7234 - - -
0.64 32 1.1117 - - -
0.66 33 0.9061 - - -
0.68 34 0.6709 - - -
0.7 35 0.3719 - - -
0.72 36 0.4776 - - -
0.74 37 0.7804 - - -
0.76 38 0.6527 - - -
0.78 39 0.4496 - - -
0.8 40 0.4754 0.6063 0.9800 -
0.82 41 0.5374 - - -
0.84 42 0.4347 - - -
0.86 43 0.2719 - - -
0.88 44 0.4964 - - -
0.9 45 0.5999 - - -
0.92 46 0.3679 - - -
0.94 47 1.1593 - - -
0.96 48 0.4503 - - -
0.98 49 0.7891 - - -
1.0 50 0.7262 - - -
1.02 51 0.384 - - -
1.04 52 0.2659 - - -
1.06 53 0.2753 - - -
1.08 54 0.7633 - - -
1.1 55 0.3969 - - -
1.12 56 0.7593 - - -
1.1400 57 0.4218 - - -
1.16 58 0.5748 - - -
1.18 59 0.247 - - -
1.2 60 0.2258 0.6012 0.9800 -
1.22 61 0.3377 - - -
1.24 62 0.2809 - - -
1.26 63 0.1531 - - -
1.28 64 0.3147 - - -
1.3 65 0.1778 - - -
1.32 66 0.5214 - - -
1.34 67 0.3154 - - -
1.3600 68 0.3562 - - -
1.38 69 0.0939 - - -
1.4 70 0.1446 - - -
1.42 71 0.1135 - - -
1.44 72 0.1814 - - -
1.46 73 0.2597 - - -
1.48 74 0.3724 - - -
1.5 75 0.1345 - - -
1.52 76 0.7102 - - -
1.54 77 0.2938 - - -
1.56 78 0.5879 - - -
1.58 79 0.6798 - - -
1.6 80 0.2806 0.4559 1.0 -
1.62 81 0.1723 - - -
1.6400 82 0.3122 - - -
1.6600 83 0.2249 - - -
1.6800 84 0.2339 - - -
1.7 85 0.664 - - -
1.72 86 0.4421 - - -
1.74 87 0.3913 - - -
1.76 88 0.1642 - - -
1.78 89 0.2313 - - -
1.8 90 0.1561 - - -
1.8200 91 0.3084 - - -
1.8400 92 0.6486 - - -
1.8600 93 0.1822 - - -
1.88 94 0.3486 - - -
1.9 95 0.414 - - -
1.92 96 0.3011 - - -
1.94 97 0.2638 - - -
1.96 98 0.2688 - - -
1.98 99 0.1398 - - -
2.0 100 0.2447 0.4312 0.9600 -
2.02 101 0.2479 - - -
2.04 102 0.3743 - - -
2.06 103 0.1115 - - -
2.08 104 0.158 - - -
2.1 105 0.161 - - -
2.12 106 0.1981 - - -
2.14 107 0.0744 - - -
2.16 108 0.0901 - - -
2.18 109 0.0332 - - -
2.2 110 0.0482 - - -
2.22 111 0.1093 - - -
2.24 112 0.0683 - - -
2.26 113 0.0923 - - -
2.2800 114 0.0389 - - -
2.3 115 0.0404 - - -
2.32 116 0.0354 - - -
2.34 117 0.0424 - - -
2.36 118 0.1524 - - -
2.38 119 0.0868 - - -
2.4 120 0.047 0.4226 0.9800 -
2.42 121 0.046 - - -
2.44 122 0.0249 - - -
2.46 123 0.0332 - - -
2.48 124 0.0582 - - -
2.5 125 0.0288 - - -
2.52 126 0.0835 - - -
2.54 127 0.0132 - - -
2.56 128 0.0562 - - -
2.58 129 0.0382 - - -
2.6 130 0.0419 - - -
2.62 131 0.0296 - - -
2.64 132 0.0909 - - -
2.66 133 0.2664 - - -
2.68 134 0.0778 - - -
2.7 135 0.0646 - - -
2.7200 136 0.0429 - - -
2.74 137 0.1977 - - -
2.76 138 0.1503 - - -
2.7800 139 0.0582 - - -
2.8 140 0.1864 0.4420 0.9800 -
2.82 141 0.0845 - - -
2.84 142 0.0359 - - -
2.86 143 0.0684 - - -
2.88 144 0.0375 - - -
2.9 145 0.2441 - - -
2.92 146 0.0728 - - -
2.94 147 0.0423 - - -
2.96 148 0.0745 - - -
2.98 149 0.1564 - - -
3.0 150 0.0416 - - -
3.02 151 0.0121 - - -
3.04 152 0.052 - - -
3.06 153 0.0255 - - -
3.08 154 0.1191 - - -
3.1 155 0.0104 - - -
3.12 156 0.0257 - - -
3.14 157 0.027 - - -
3.16 158 0.0305 - - -
3.18 159 0.0292 - - -
3.2 160 0.0194 0.4015 0.9600 -
3.22 161 0.018 - - -
3.24 162 0.0153 - - -
3.26 163 0.0318 - - -
3.2800 164 0.0221 - - -
3.3 165 0.0087 - - -
3.32 166 0.0458 - - -
3.34 167 0.1314 - - -
3.36 168 0.0511 - - -
3.38 169 0.1193 - - -
3.4 170 0.1112 - - -
3.42 171 0.0646 - - -
3.44 172 0.1594 - - -
3.46 173 0.022 - - -
3.48 174 0.0097 - - -
3.5 175 0.0904 - - -
3.52 176 0.0142 - - -
3.54 177 0.0433 - - -
3.56 178 0.032 - - -
3.58 179 0.025 - - -
3.6 180 0.02 0.4191 0.9800 -
3.62 181 0.0629 - - -
3.64 182 0.0269 - - -
3.66 183 0.0207 - - -
3.68 184 0.0319 - - -
3.7 185 0.0401 - - -
3.7200 186 0.0078 - - -
3.74 187 0.0347 - - -
3.76 188 0.1676 - - -
3.7800 189 0.0089 - - -
3.8 190 0.0096 - - -
3.82 191 0.0257 - - -
3.84 192 0.0176 - - -
3.86 193 0.0084 - - -
3.88 194 0.0068 - - -
3.9 195 0.0188 - - -
3.92 196 0.0535 - - -
3.94 197 0.0142 - - -
3.96 198 0.0153 - - -
3.98 199 0.096 - - -
4.0 200 0.0084 0.3991 0.9800 -
4.02 201 0.0081 - - -
4.04 202 0.0061 - - -
4.06 203 0.0081 - - -
4.08 204 0.0507 - - -
4.1 205 0.013 - - -
4.12 206 0.0081 - - -
4.14 207 0.0577 - - -
4.16 208 0.0114 - - -
4.18 209 0.0049 - - -
4.2 210 0.0044 - - -
4.22 211 0.0662 - - -
4.24 212 0.0288 - - -
4.26 213 0.0162 - - -
4.28 214 0.0653 - - -
4.3 215 0.0078 - - -
4.32 216 0.021 - - -
4.34 217 0.0915 - - -
4.36 218 0.0135 - - -
4.38 219 0.0754 - - -
4.4 220 0.007 0.4001 0.9800 -
4.42 221 0.0061 - - -
4.44 222 0.0169 - - -
4.46 223 0.004 - - -
4.48 224 0.0175 - - -
4.5 225 0.0068 - - -
4.52 226 0.0073 - - -
4.54 227 0.0127 - - -
4.5600 228 0.0106 - - -
4.58 229 0.0118 - - -
4.6 230 0.0455 - - -
4.62 231 0.0094 - - -
4.64 232 0.0583 - - -
4.66 233 0.0267 - - -
4.68 234 0.0085 - - -
4.7 235 0.0203 - - -
4.72 236 0.0089 - - -
4.74 237 0.1229 - - -
4.76 238 0.0092 - - -
4.78 239 0.0218 - - -
4.8 240 0.0526 0.4114 0.9800 -
4.82 241 0.0163 - - -
4.84 242 0.0295 - - -
4.86 243 0.0197 - - -
4.88 244 0.0022 - - -
4.9 245 0.0174 - - -
4.92 246 0.0223 - - -
4.9400 247 0.0074 - - -
4.96 248 0.0115 - - -
4.98 249 0.0228 - - -
5.0 250 0.0381 - - -
-1 -1 - - - 0.9800

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 5.0.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sahithkumar7/final-mpnet-base-fullfinetuned-epoch5

Finetuned
(86)
this model

Evaluation results