SentenceTransformer based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sahithkumar7/final-mpnet-base-fullfinetuned-epoch5")
# Run inference
sentences = [
'What is the number of genes obtained from comparing control and LIPUS-stimulated samples?',
'Differentially expressed genes (DEGs) were obtained\nbetween control and LIPUS-stimulated samples using\nan adjusted P<0.05 and|log2FC| > 1 as cutoffs to define\nstatistically significant differential expression. 676 genes\nwere obtained from which 578 were upregulated when\nstimulated with LIPUS and 98 genes were subregulated\n(Supp. Figure 1). To further understand the functions\nand pathways associated with the differentially expressed\ngenes (DEG), Gene Ontology (GO) and Kyoto Encyclo-\npedia of Genes and Genomes (KEGG) analyses were con-\nducted using the DAVID database [37, 38].',
'independent studies have shown a raising trend in both cancer incidence [2] and a high-salt\ndietary lifestyle [7], there is no direct correlation between dietary salt intake and breast\ncancer. Interestingly, in the human body, certain organs such as the skin and lymph nodes\nhave a natural tendency to accumulate salt [8]. Although unknown, the pathophysiological\nsignificance of this selective accumulation of sodium in certain organs and solid tumors is\nan area of intense research.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.6568, -0.0120],
# [ 0.6568, 1.0000, -0.0343],
# [-0.0120, -0.0343, 1.0000]])
Evaluation
Metrics
Triplet
- Datasets:
initial_test
andfinal_test
- Evaluated with
TripletEvaluator
Metric | initial_test | final_test |
---|---|---|
cosine_accuracy | 0.98 | 0.98 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 800 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 800 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 16.79 tokens
- max: 39 tokens
- min: 39 tokens
- mean: 117.74 tokens
- max: 265 tokens
- min: 40 tokens
- mean: 116.14 tokens
- max: 356 tokens
- Samples:
anchor positive negative What is the limitation of FBG-based sensors in tactile feedback?
Furthermore, FBG-based 3-axis tactile sensors have been
proposed for a more comprehensive haptic perception tool
in surgeries (Figure 1D) (16). Five optical fibers merged
with FBG sensors are suspended in a deformable medium
and measure the compression or tension of the tissue as the
sensors are pressed against it, returning a _ surface
reaction map. While FBG-based sensors are small, flexible, and
sensitive, there are several challenges that need to be
addressed for optimal performance for tactile feedback. These
sensors are temperature sensitive, requiring temperature141]. Therefore, it is not known to what extent spared
axons are remyelinated by transplanted Schwann cells,
nor is the contribution of this myelin to functional im-
provements proven. Transplantation of Schwann cells
incapable of producing myelin, such as cells derived
from trembler (Pmp22Tr) mutant mice, may be useful
in establishing a causal relationship between myelin re-
generation and functional improvements. Several MSC
transplantations demonstrate an increase of myelin re-
tention and the number of myelinated axons in the le-
sion site during a chronic post-injury period [57]. Thus,What are the advantages of strain elastography?
frontiersin.org
--- Page 8 ---
Kumar et al.
TABLE 2 Modalities of ultrasound elastography.
Modality
Strain elastography
Excitation
Applied manual compression (38)
Advantages
No additional specialized equipment
required (40)
10.3389/fmedt.2023.1238129
Limitations
Qualitative measurements (39)
Internal physiological mechanism (42)
Simple low-cost design (40)
Applied compression is operator-dependent (51)
More commonly used (52)
High inter-observer variability (51)
coustic radiation force impulse Acoustic radiation force (43)
(ARFI) imaging
Image beyond slip boundaries (45)Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional afil-
iations.
onon)
Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, 525 East 68th Street,
Room M-522, Box 130, New York, NY 10065, USA; [email protected] or [email protected]What is the material used for the substrate in a piezoelectric element?
gain for biomedical applications.
frontiersin.org
--- Page 9 ---
Kumar et al.
>
[PMUT ]
Electrode: Voltage Electrode2
© piezoelectric elements
o
—: OSi02
©) silicon substrate
B [ CMUT ]
AC DC
membrane
—————
vacuum
insulator
substrate
= ground
FIGURE 3Histopatholo
Cytology Total, n (%) Benign, n (%) P ey Cancer, n (%)
FA 2 (15.4%) FTC 2 (25%)
0 GD (7.7%) PTC 6 (75%)
I 21 (4.0%) NG 9 (69.2%)
Other diagnosis (7.7%)
FA 15 (9.9%) FIC 4 (14.3%)
FT-UMP (0.7%) MTC 3 (10.7%)
GD (0.7%) PTC 21 (75%)
Il 180 (34.5%) OA (0.7%)
LT (0.7%)
NG 130 (85.5%)
NIFTP 2 (1.3%)
FA 14 (23.7%) FIC 7 (28.0%)
FI-UMP 2 (3.4%) OTC 1 (4.0%)
OA (1.7%) PTC 17 (68.0%)
Il 84 (16.1%) LT 3 (5.1%)
NG 35 (59.3%)
NIFTP 2 (3.4%)
WDT-UMP 2 (3.4%)
FA 15 (26.3%) OTC 1 (7.7%)
FT-UMP 5 (8.8%) PTC 12 (92.3%)
OA 13 (22.8%)
IV 70 (13.4%) LT 2 (3.5%)
NG 18 (31.6%)
NIFTP 2 (3.5%) - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
json
- Dataset: json
- Size: 200 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 200 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 17.14 tokens
- max: 35 tokens
- min: 40 tokens
- mean: 121.3 tokens
- max: 356 tokens
- min: 45 tokens
- mean: 119.75 tokens
- max: 356 tokens
- Samples:
anchor positive negative What can differentiate into a very wide variety of tissues?
lead to decreased rates of graft-versus-host disease. They
also can differentiate into a very wide variety of tissues. For
example, when compared with bone marrow stem cells or
mobilized peripheral blood, umbilical cord blood stem cells
have a greater repopulating ability.5° Cord blood derived
CD34+ cells have very potent hematopoietic abilities, and
this is attributed to the immaturity of the stem cells rela-
tive to adult derived cells. Studies have been done that an-
alyze long term survival of children with hematologic dis-
orders who were transplanted with umbilical cord bloodmetabolic regulation may affect the function of more than one organelle. Therefore, if the
miR-17-92 regulatory cluster can perturb genes related to mitochondrial metabolic function,
it could be also related, in some way, to genes involved in lysosomal metabolic function.
Lysosomes are intracellular organelles that, in form of small vesicles, participate in
several cellular functions, mainly digestion, but also vesicle trafficking, autophagy, nutrient
sensing, cellular growth, signaling [85], and even enzyme secretion. The membrane-boundWhat are the two most common types of pluripotent stem cells?
III]. AMNIOTIC CELLS AS A SOURCE FOR STEM
CELLS
Historically, the two most common types of pluripotent
stem cells include embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs).35 However, despite the many
research efforts to improve ESC and iPSC technologies,
there are still enormous clinical challenges.°> Two signif-
icant issues posed by ESC and iPSC technologies include
low survival rate of transplanted cells and tumorigenicity.°>
Recently, researchers have isolated pluripotent stem cellsExplanation: criterion 6 indicates a positive diagnosis only within the DC VI group
relative to all other categories. Criterion 5 indicates a positive diagnosis within the DCs VI
and V relative to all other categories.
The highest positive predictive value (PPV) confirming malignancy through histopatho-
logical examination for criterion 6 was 0.93, and for criterion 5, it was 0.92. For the subsequent
criteria, the PPVs were as follows: criterion 4—0.66; criterion 3—0.55; criterion 2—0.40.What percentage of stem cells are present in bone marrow?
ing 30% in some tissues.43-45 This is a significant difference
from the .0001-.0002% stem cells present in bone marrow.43
Given this difference in stem cell concentration between
the sources, there will be more ADSCs per sample of WATmigration of bCSCs. This finding raises the possibil-
ity that LIPUS may decrease the ability of these cells to
invade adjacent tissues and start the process of metasta-
ses. These results also suggested that some of the changes
induced by LIPUS take longer to be detected in this type
of 2D migration model, possible due to changes in gene
expression pattern. To further study this hypothesis, we
performed a Transwell invasion assay. The data revealed
a reduced number of cells crossing the membrane after
LIPUS stimulation, indicating that therapeutic LIPUS - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | initial_test_cosine_accuracy | final_test_cosine_accuracy |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.7800 | - |
0.02 | 1 | 3.124 | - | - | - |
0.04 | 2 | 3.2227 | - | - | - |
0.06 | 3 | 3.1108 | - | - | - |
0.08 | 4 | 3.1317 | - | - | - |
0.1 | 5 | 3.334 | - | - | - |
0.12 | 6 | 3.0113 | - | - | - |
0.14 | 7 | 3.1324 | - | - | - |
0.16 | 8 | 2.9737 | - | - | - |
0.18 | 9 | 3.06 | - | - | - |
0.2 | 10 | 3.0135 | - | - | - |
0.22 | 11 | 2.6313 | - | - | - |
0.24 | 12 | 2.6668 | - | - | - |
0.26 | 13 | 3.0152 | - | - | - |
0.28 | 14 | 2.2725 | - | - | - |
0.3 | 15 | 2.0777 | - | - | - |
0.32 | 16 | 2.1797 | - | - | - |
0.34 | 17 | 1.5419 | - | - | - |
0.36 | 18 | 1.5243 | - | - | - |
0.38 | 19 | 1.9736 | - | - | - |
0.4 | 20 | 1.3789 | 1.1273 | 0.9200 | - |
0.42 | 21 | 1.3214 | - | - | - |
0.44 | 22 | 1.1415 | - | - | - |
0.46 | 23 | 1.2763 | - | - | - |
0.48 | 24 | 1.2017 | - | - | - |
0.5 | 25 | 0.8564 | - | - | - |
0.52 | 26 | 1.1946 | - | - | - |
0.54 | 27 | 0.6691 | - | - | - |
0.56 | 28 | 1.0806 | - | - | - |
0.58 | 29 | 0.9866 | - | - | - |
0.6 | 30 | 0.6018 | - | - | - |
0.62 | 31 | 0.7234 | - | - | - |
0.64 | 32 | 1.1117 | - | - | - |
0.66 | 33 | 0.9061 | - | - | - |
0.68 | 34 | 0.6709 | - | - | - |
0.7 | 35 | 0.3719 | - | - | - |
0.72 | 36 | 0.4776 | - | - | - |
0.74 | 37 | 0.7804 | - | - | - |
0.76 | 38 | 0.6527 | - | - | - |
0.78 | 39 | 0.4496 | - | - | - |
0.8 | 40 | 0.4754 | 0.6063 | 0.9800 | - |
0.82 | 41 | 0.5374 | - | - | - |
0.84 | 42 | 0.4347 | - | - | - |
0.86 | 43 | 0.2719 | - | - | - |
0.88 | 44 | 0.4964 | - | - | - |
0.9 | 45 | 0.5999 | - | - | - |
0.92 | 46 | 0.3679 | - | - | - |
0.94 | 47 | 1.1593 | - | - | - |
0.96 | 48 | 0.4503 | - | - | - |
0.98 | 49 | 0.7891 | - | - | - |
1.0 | 50 | 0.7262 | - | - | - |
1.02 | 51 | 0.384 | - | - | - |
1.04 | 52 | 0.2659 | - | - | - |
1.06 | 53 | 0.2753 | - | - | - |
1.08 | 54 | 0.7633 | - | - | - |
1.1 | 55 | 0.3969 | - | - | - |
1.12 | 56 | 0.7593 | - | - | - |
1.1400 | 57 | 0.4218 | - | - | - |
1.16 | 58 | 0.5748 | - | - | - |
1.18 | 59 | 0.247 | - | - | - |
1.2 | 60 | 0.2258 | 0.6012 | 0.9800 | - |
1.22 | 61 | 0.3377 | - | - | - |
1.24 | 62 | 0.2809 | - | - | - |
1.26 | 63 | 0.1531 | - | - | - |
1.28 | 64 | 0.3147 | - | - | - |
1.3 | 65 | 0.1778 | - | - | - |
1.32 | 66 | 0.5214 | - | - | - |
1.34 | 67 | 0.3154 | - | - | - |
1.3600 | 68 | 0.3562 | - | - | - |
1.38 | 69 | 0.0939 | - | - | - |
1.4 | 70 | 0.1446 | - | - | - |
1.42 | 71 | 0.1135 | - | - | - |
1.44 | 72 | 0.1814 | - | - | - |
1.46 | 73 | 0.2597 | - | - | - |
1.48 | 74 | 0.3724 | - | - | - |
1.5 | 75 | 0.1345 | - | - | - |
1.52 | 76 | 0.7102 | - | - | - |
1.54 | 77 | 0.2938 | - | - | - |
1.56 | 78 | 0.5879 | - | - | - |
1.58 | 79 | 0.6798 | - | - | - |
1.6 | 80 | 0.2806 | 0.4559 | 1.0 | - |
1.62 | 81 | 0.1723 | - | - | - |
1.6400 | 82 | 0.3122 | - | - | - |
1.6600 | 83 | 0.2249 | - | - | - |
1.6800 | 84 | 0.2339 | - | - | - |
1.7 | 85 | 0.664 | - | - | - |
1.72 | 86 | 0.4421 | - | - | - |
1.74 | 87 | 0.3913 | - | - | - |
1.76 | 88 | 0.1642 | - | - | - |
1.78 | 89 | 0.2313 | - | - | - |
1.8 | 90 | 0.1561 | - | - | - |
1.8200 | 91 | 0.3084 | - | - | - |
1.8400 | 92 | 0.6486 | - | - | - |
1.8600 | 93 | 0.1822 | - | - | - |
1.88 | 94 | 0.3486 | - | - | - |
1.9 | 95 | 0.414 | - | - | - |
1.92 | 96 | 0.3011 | - | - | - |
1.94 | 97 | 0.2638 | - | - | - |
1.96 | 98 | 0.2688 | - | - | - |
1.98 | 99 | 0.1398 | - | - | - |
2.0 | 100 | 0.2447 | 0.4312 | 0.9600 | - |
2.02 | 101 | 0.2479 | - | - | - |
2.04 | 102 | 0.3743 | - | - | - |
2.06 | 103 | 0.1115 | - | - | - |
2.08 | 104 | 0.158 | - | - | - |
2.1 | 105 | 0.161 | - | - | - |
2.12 | 106 | 0.1981 | - | - | - |
2.14 | 107 | 0.0744 | - | - | - |
2.16 | 108 | 0.0901 | - | - | - |
2.18 | 109 | 0.0332 | - | - | - |
2.2 | 110 | 0.0482 | - | - | - |
2.22 | 111 | 0.1093 | - | - | - |
2.24 | 112 | 0.0683 | - | - | - |
2.26 | 113 | 0.0923 | - | - | - |
2.2800 | 114 | 0.0389 | - | - | - |
2.3 | 115 | 0.0404 | - | - | - |
2.32 | 116 | 0.0354 | - | - | - |
2.34 | 117 | 0.0424 | - | - | - |
2.36 | 118 | 0.1524 | - | - | - |
2.38 | 119 | 0.0868 | - | - | - |
2.4 | 120 | 0.047 | 0.4226 | 0.9800 | - |
2.42 | 121 | 0.046 | - | - | - |
2.44 | 122 | 0.0249 | - | - | - |
2.46 | 123 | 0.0332 | - | - | - |
2.48 | 124 | 0.0582 | - | - | - |
2.5 | 125 | 0.0288 | - | - | - |
2.52 | 126 | 0.0835 | - | - | - |
2.54 | 127 | 0.0132 | - | - | - |
2.56 | 128 | 0.0562 | - | - | - |
2.58 | 129 | 0.0382 | - | - | - |
2.6 | 130 | 0.0419 | - | - | - |
2.62 | 131 | 0.0296 | - | - | - |
2.64 | 132 | 0.0909 | - | - | - |
2.66 | 133 | 0.2664 | - | - | - |
2.68 | 134 | 0.0778 | - | - | - |
2.7 | 135 | 0.0646 | - | - | - |
2.7200 | 136 | 0.0429 | - | - | - |
2.74 | 137 | 0.1977 | - | - | - |
2.76 | 138 | 0.1503 | - | - | - |
2.7800 | 139 | 0.0582 | - | - | - |
2.8 | 140 | 0.1864 | 0.4420 | 0.9800 | - |
2.82 | 141 | 0.0845 | - | - | - |
2.84 | 142 | 0.0359 | - | - | - |
2.86 | 143 | 0.0684 | - | - | - |
2.88 | 144 | 0.0375 | - | - | - |
2.9 | 145 | 0.2441 | - | - | - |
2.92 | 146 | 0.0728 | - | - | - |
2.94 | 147 | 0.0423 | - | - | - |
2.96 | 148 | 0.0745 | - | - | - |
2.98 | 149 | 0.1564 | - | - | - |
3.0 | 150 | 0.0416 | - | - | - |
3.02 | 151 | 0.0121 | - | - | - |
3.04 | 152 | 0.052 | - | - | - |
3.06 | 153 | 0.0255 | - | - | - |
3.08 | 154 | 0.1191 | - | - | - |
3.1 | 155 | 0.0104 | - | - | - |
3.12 | 156 | 0.0257 | - | - | - |
3.14 | 157 | 0.027 | - | - | - |
3.16 | 158 | 0.0305 | - | - | - |
3.18 | 159 | 0.0292 | - | - | - |
3.2 | 160 | 0.0194 | 0.4015 | 0.9600 | - |
3.22 | 161 | 0.018 | - | - | - |
3.24 | 162 | 0.0153 | - | - | - |
3.26 | 163 | 0.0318 | - | - | - |
3.2800 | 164 | 0.0221 | - | - | - |
3.3 | 165 | 0.0087 | - | - | - |
3.32 | 166 | 0.0458 | - | - | - |
3.34 | 167 | 0.1314 | - | - | - |
3.36 | 168 | 0.0511 | - | - | - |
3.38 | 169 | 0.1193 | - | - | - |
3.4 | 170 | 0.1112 | - | - | - |
3.42 | 171 | 0.0646 | - | - | - |
3.44 | 172 | 0.1594 | - | - | - |
3.46 | 173 | 0.022 | - | - | - |
3.48 | 174 | 0.0097 | - | - | - |
3.5 | 175 | 0.0904 | - | - | - |
3.52 | 176 | 0.0142 | - | - | - |
3.54 | 177 | 0.0433 | - | - | - |
3.56 | 178 | 0.032 | - | - | - |
3.58 | 179 | 0.025 | - | - | - |
3.6 | 180 | 0.02 | 0.4191 | 0.9800 | - |
3.62 | 181 | 0.0629 | - | - | - |
3.64 | 182 | 0.0269 | - | - | - |
3.66 | 183 | 0.0207 | - | - | - |
3.68 | 184 | 0.0319 | - | - | - |
3.7 | 185 | 0.0401 | - | - | - |
3.7200 | 186 | 0.0078 | - | - | - |
3.74 | 187 | 0.0347 | - | - | - |
3.76 | 188 | 0.1676 | - | - | - |
3.7800 | 189 | 0.0089 | - | - | - |
3.8 | 190 | 0.0096 | - | - | - |
3.82 | 191 | 0.0257 | - | - | - |
3.84 | 192 | 0.0176 | - | - | - |
3.86 | 193 | 0.0084 | - | - | - |
3.88 | 194 | 0.0068 | - | - | - |
3.9 | 195 | 0.0188 | - | - | - |
3.92 | 196 | 0.0535 | - | - | - |
3.94 | 197 | 0.0142 | - | - | - |
3.96 | 198 | 0.0153 | - | - | - |
3.98 | 199 | 0.096 | - | - | - |
4.0 | 200 | 0.0084 | 0.3991 | 0.9800 | - |
4.02 | 201 | 0.0081 | - | - | - |
4.04 | 202 | 0.0061 | - | - | - |
4.06 | 203 | 0.0081 | - | - | - |
4.08 | 204 | 0.0507 | - | - | - |
4.1 | 205 | 0.013 | - | - | - |
4.12 | 206 | 0.0081 | - | - | - |
4.14 | 207 | 0.0577 | - | - | - |
4.16 | 208 | 0.0114 | - | - | - |
4.18 | 209 | 0.0049 | - | - | - |
4.2 | 210 | 0.0044 | - | - | - |
4.22 | 211 | 0.0662 | - | - | - |
4.24 | 212 | 0.0288 | - | - | - |
4.26 | 213 | 0.0162 | - | - | - |
4.28 | 214 | 0.0653 | - | - | - |
4.3 | 215 | 0.0078 | - | - | - |
4.32 | 216 | 0.021 | - | - | - |
4.34 | 217 | 0.0915 | - | - | - |
4.36 | 218 | 0.0135 | - | - | - |
4.38 | 219 | 0.0754 | - | - | - |
4.4 | 220 | 0.007 | 0.4001 | 0.9800 | - |
4.42 | 221 | 0.0061 | - | - | - |
4.44 | 222 | 0.0169 | - | - | - |
4.46 | 223 | 0.004 | - | - | - |
4.48 | 224 | 0.0175 | - | - | - |
4.5 | 225 | 0.0068 | - | - | - |
4.52 | 226 | 0.0073 | - | - | - |
4.54 | 227 | 0.0127 | - | - | - |
4.5600 | 228 | 0.0106 | - | - | - |
4.58 | 229 | 0.0118 | - | - | - |
4.6 | 230 | 0.0455 | - | - | - |
4.62 | 231 | 0.0094 | - | - | - |
4.64 | 232 | 0.0583 | - | - | - |
4.66 | 233 | 0.0267 | - | - | - |
4.68 | 234 | 0.0085 | - | - | - |
4.7 | 235 | 0.0203 | - | - | - |
4.72 | 236 | 0.0089 | - | - | - |
4.74 | 237 | 0.1229 | - | - | - |
4.76 | 238 | 0.0092 | - | - | - |
4.78 | 239 | 0.0218 | - | - | - |
4.8 | 240 | 0.0526 | 0.4114 | 0.9800 | - |
4.82 | 241 | 0.0163 | - | - | - |
4.84 | 242 | 0.0295 | - | - | - |
4.86 | 243 | 0.0197 | - | - | - |
4.88 | 244 | 0.0022 | - | - | - |
4.9 | 245 | 0.0174 | - | - | - |
4.92 | 246 | 0.0223 | - | - | - |
4.9400 | 247 | 0.0074 | - | - | - |
4.96 | 248 | 0.0115 | - | - | - |
4.98 | 249 | 0.0228 | - | - | - |
5.0 | 250 | 0.0381 | - | - | - |
-1 | -1 | - | - | - | 0.9800 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for sahithkumar7/final-mpnet-base-fullfinetuned-epoch5
Base model
microsoft/mpnet-baseEvaluation results
- Cosine Accuracy on initial testself-reported0.980
- Cosine Accuracy on final testself-reported0.980