bert-base-spanish-wwm-cased-ner
This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0974
- Precision: 0.8664
- Recall: 0.8784
- F1: 0.8724
- Accuracy: 0.9807
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1848 | 0.3831 | 100 | 0.1168 | 0.7770 | 0.8227 | 0.7992 | 0.9715 |
0.0688 | 0.7663 | 200 | 0.0903 | 0.8460 | 0.8448 | 0.8454 | 0.9769 |
0.048 | 1.1494 | 300 | 0.0943 | 0.8374 | 0.8557 | 0.8465 | 0.9776 |
0.0363 | 1.5326 | 400 | 0.0826 | 0.8508 | 0.8718 | 0.8612 | 0.9801 |
0.0373 | 1.9157 | 500 | 0.0906 | 0.8375 | 0.8455 | 0.8415 | 0.9776 |
0.0243 | 2.2989 | 600 | 0.0940 | 0.8523 | 0.8632 | 0.8577 | 0.9788 |
0.0253 | 2.6820 | 700 | 0.1008 | 0.8364 | 0.8541 | 0.8452 | 0.9781 |
0.0204 | 3.0651 | 800 | 0.0974 | 0.8664 | 0.8784 | 0.8724 | 0.9807 |
0.0138 | 3.4483 | 900 | 0.1045 | 0.8322 | 0.8623 | 0.8470 | 0.9778 |
0.0154 | 3.8314 | 1000 | 0.1020 | 0.8628 | 0.8763 | 0.8695 | 0.9804 |
0.0139 | 4.2146 | 1100 | 0.1107 | 0.8547 | 0.8681 | 0.8614 | 0.9786 |
0.0114 | 4.5977 | 1200 | 0.1068 | 0.8579 | 0.8639 | 0.8609 | 0.9795 |
0.0097 | 4.9808 | 1300 | 0.1167 | 0.8560 | 0.8688 | 0.8624 | 0.9794 |
0.0079 | 5.3640 | 1400 | 0.1203 | 0.8462 | 0.8630 | 0.8545 | 0.9784 |
0.0069 | 5.7471 | 1500 | 0.1177 | 0.8511 | 0.8606 | 0.8559 | 0.9785 |
0.007 | 6.1303 | 1600 | 0.1348 | 0.8445 | 0.8529 | 0.8487 | 0.9780 |
0.0056 | 6.5134 | 1700 | 0.1215 | 0.8519 | 0.8592 | 0.8556 | 0.9788 |
0.0057 | 6.8966 | 1800 | 0.1212 | 0.8619 | 0.8739 | 0.8679 | 0.9800 |
0.0047 | 7.2797 | 1900 | 0.1290 | 0.8604 | 0.8702 | 0.8653 | 0.9801 |
0.0037 | 7.6628 | 2000 | 0.1461 | 0.8448 | 0.8578 | 0.8513 | 0.9784 |
0.0048 | 8.0460 | 2100 | 0.1371 | 0.8632 | 0.8735 | 0.8683 | 0.9798 |
0.0034 | 8.4291 | 2200 | 0.1419 | 0.8483 | 0.8655 | 0.8568 | 0.9788 |
0.004 | 8.8123 | 2300 | 0.1397 | 0.8655 | 0.8758 | 0.8706 | 0.9801 |
0.0029 | 9.1954 | 2400 | 0.1518 | 0.8506 | 0.8597 | 0.8551 | 0.9784 |
0.0034 | 9.5785 | 2500 | 0.1542 | 0.8602 | 0.8707 | 0.8654 | 0.9795 |
0.0029 | 9.9617 | 2600 | 0.1465 | 0.8596 | 0.8693 | 0.8644 | 0.9795 |
0.0032 | 10.3448 | 2700 | 0.1542 | 0.8495 | 0.8574 | 0.8534 | 0.9790 |
0.0031 | 10.7280 | 2800 | 0.1392 | 0.8665 | 0.8725 | 0.8695 | 0.9800 |
0.0025 | 11.1111 | 2900 | 0.1378 | 0.8652 | 0.8735 | 0.8693 | 0.9801 |
0.0016 | 11.4943 | 3000 | 0.1585 | 0.8535 | 0.8690 | 0.8612 | 0.9794 |
0.0026 | 11.8774 | 3100 | 0.1565 | 0.8472 | 0.8658 | 0.8564 | 0.9793 |
0.0026 | 12.2605 | 3200 | 0.1533 | 0.8576 | 0.8700 | 0.8637 | 0.9796 |
0.0021 | 12.6437 | 3300 | 0.1588 | 0.8571 | 0.8653 | 0.8612 | 0.9793 |
0.0024 | 13.0268 | 3400 | 0.1470 | 0.8613 | 0.8711 | 0.8662 | 0.9804 |
0.0018 | 13.4100 | 3500 | 0.1584 | 0.8567 | 0.8683 | 0.8625 | 0.9795 |
0.002 | 13.7931 | 3600 | 0.1622 | 0.8521 | 0.8700 | 0.8609 | 0.9792 |
0.0018 | 14.1762 | 3700 | 0.1624 | 0.8550 | 0.8641 | 0.8595 | 0.9792 |
0.0014 | 14.5594 | 3800 | 0.1677 | 0.8617 | 0.8611 | 0.8614 | 0.9791 |
0.0022 | 14.9425 | 3900 | 0.1622 | 0.8525 | 0.8634 | 0.8579 | 0.9789 |
0.0011 | 15.3257 | 4000 | 0.1666 | 0.8549 | 0.8625 | 0.8587 | 0.9789 |
0.0014 | 15.7088 | 4100 | 0.1640 | 0.8600 | 0.8702 | 0.8651 | 0.9795 |
0.0012 | 16.0920 | 4200 | 0.1639 | 0.8598 | 0.8730 | 0.8663 | 0.9798 |
0.0011 | 16.4751 | 4300 | 0.1645 | 0.8634 | 0.8746 | 0.8690 | 0.9801 |
0.0013 | 16.8582 | 4400 | 0.1676 | 0.8577 | 0.8681 | 0.8629 | 0.9793 |
0.0017 | 17.2414 | 4500 | 0.1741 | 0.8554 | 0.8616 | 0.8585 | 0.9788 |
0.0014 | 17.6245 | 4600 | 0.1683 | 0.8578 | 0.8690 | 0.8634 | 0.9797 |
0.001 | 18.0077 | 4700 | 0.1718 | 0.8556 | 0.8655 | 0.8605 | 0.9792 |
0.0009 | 18.3908 | 4800 | 0.1675 | 0.8595 | 0.8681 | 0.8638 | 0.9795 |
0.0009 | 18.7739 | 4900 | 0.1702 | 0.8597 | 0.8683 | 0.8640 | 0.9796 |
0.0011 | 19.1571 | 5000 | 0.1706 | 0.8616 | 0.8704 | 0.8660 | 0.9798 |
0.0008 | 19.5402 | 5100 | 0.1706 | 0.8590 | 0.8686 | 0.8637 | 0.9797 |
0.0009 | 19.9234 | 5200 | 0.1704 | 0.8598 | 0.8690 | 0.8644 | 0.9797 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for santipvz/bert_spanish_fine_tuned
Base model
dccuchile/bert-base-spanish-wwm-cased