bert-base-spanish-wwm-cased-ner

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0974
  • Precision: 0.8664
  • Recall: 0.8784
  • F1: 0.8724
  • Accuracy: 0.9807

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1848 0.3831 100 0.1168 0.7770 0.8227 0.7992 0.9715
0.0688 0.7663 200 0.0903 0.8460 0.8448 0.8454 0.9769
0.048 1.1494 300 0.0943 0.8374 0.8557 0.8465 0.9776
0.0363 1.5326 400 0.0826 0.8508 0.8718 0.8612 0.9801
0.0373 1.9157 500 0.0906 0.8375 0.8455 0.8415 0.9776
0.0243 2.2989 600 0.0940 0.8523 0.8632 0.8577 0.9788
0.0253 2.6820 700 0.1008 0.8364 0.8541 0.8452 0.9781
0.0204 3.0651 800 0.0974 0.8664 0.8784 0.8724 0.9807
0.0138 3.4483 900 0.1045 0.8322 0.8623 0.8470 0.9778
0.0154 3.8314 1000 0.1020 0.8628 0.8763 0.8695 0.9804
0.0139 4.2146 1100 0.1107 0.8547 0.8681 0.8614 0.9786
0.0114 4.5977 1200 0.1068 0.8579 0.8639 0.8609 0.9795
0.0097 4.9808 1300 0.1167 0.8560 0.8688 0.8624 0.9794
0.0079 5.3640 1400 0.1203 0.8462 0.8630 0.8545 0.9784
0.0069 5.7471 1500 0.1177 0.8511 0.8606 0.8559 0.9785
0.007 6.1303 1600 0.1348 0.8445 0.8529 0.8487 0.9780
0.0056 6.5134 1700 0.1215 0.8519 0.8592 0.8556 0.9788
0.0057 6.8966 1800 0.1212 0.8619 0.8739 0.8679 0.9800
0.0047 7.2797 1900 0.1290 0.8604 0.8702 0.8653 0.9801
0.0037 7.6628 2000 0.1461 0.8448 0.8578 0.8513 0.9784
0.0048 8.0460 2100 0.1371 0.8632 0.8735 0.8683 0.9798
0.0034 8.4291 2200 0.1419 0.8483 0.8655 0.8568 0.9788
0.004 8.8123 2300 0.1397 0.8655 0.8758 0.8706 0.9801
0.0029 9.1954 2400 0.1518 0.8506 0.8597 0.8551 0.9784
0.0034 9.5785 2500 0.1542 0.8602 0.8707 0.8654 0.9795
0.0029 9.9617 2600 0.1465 0.8596 0.8693 0.8644 0.9795
0.0032 10.3448 2700 0.1542 0.8495 0.8574 0.8534 0.9790
0.0031 10.7280 2800 0.1392 0.8665 0.8725 0.8695 0.9800
0.0025 11.1111 2900 0.1378 0.8652 0.8735 0.8693 0.9801
0.0016 11.4943 3000 0.1585 0.8535 0.8690 0.8612 0.9794
0.0026 11.8774 3100 0.1565 0.8472 0.8658 0.8564 0.9793
0.0026 12.2605 3200 0.1533 0.8576 0.8700 0.8637 0.9796
0.0021 12.6437 3300 0.1588 0.8571 0.8653 0.8612 0.9793
0.0024 13.0268 3400 0.1470 0.8613 0.8711 0.8662 0.9804
0.0018 13.4100 3500 0.1584 0.8567 0.8683 0.8625 0.9795
0.002 13.7931 3600 0.1622 0.8521 0.8700 0.8609 0.9792
0.0018 14.1762 3700 0.1624 0.8550 0.8641 0.8595 0.9792
0.0014 14.5594 3800 0.1677 0.8617 0.8611 0.8614 0.9791
0.0022 14.9425 3900 0.1622 0.8525 0.8634 0.8579 0.9789
0.0011 15.3257 4000 0.1666 0.8549 0.8625 0.8587 0.9789
0.0014 15.7088 4100 0.1640 0.8600 0.8702 0.8651 0.9795
0.0012 16.0920 4200 0.1639 0.8598 0.8730 0.8663 0.9798
0.0011 16.4751 4300 0.1645 0.8634 0.8746 0.8690 0.9801
0.0013 16.8582 4400 0.1676 0.8577 0.8681 0.8629 0.9793
0.0017 17.2414 4500 0.1741 0.8554 0.8616 0.8585 0.9788
0.0014 17.6245 4600 0.1683 0.8578 0.8690 0.8634 0.9797
0.001 18.0077 4700 0.1718 0.8556 0.8655 0.8605 0.9792
0.0009 18.3908 4800 0.1675 0.8595 0.8681 0.8638 0.9795
0.0009 18.7739 4900 0.1702 0.8597 0.8683 0.8640 0.9796
0.0011 19.1571 5000 0.1706 0.8616 0.8704 0.8660 0.9798
0.0008 19.5402 5100 0.1706 0.8590 0.8686 0.8637 0.9797
0.0009 19.9234 5200 0.1704 0.8598 0.8690 0.8644 0.9797

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for santipvz/bert_spanish_fine_tuned

Finetuned
(111)
this model