distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0298
  • Accuracy: {'accuracy': 0.891}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3424 {'accuracy': 0.882}
0.4306 2.0 500 0.5211 {'accuracy': 0.858}
0.4306 3.0 750 0.6747 {'accuracy': 0.87}
0.1864 4.0 1000 0.6223 {'accuracy': 0.892}
0.1864 5.0 1250 0.8533 {'accuracy': 0.881}
0.075 6.0 1500 0.8873 {'accuracy': 0.892}
0.075 7.0 1750 0.9566 {'accuracy': 0.889}
0.0148 8.0 2000 0.9850 {'accuracy': 0.892}
0.0148 9.0 2250 1.0066 {'accuracy': 0.887}
0.0019 10.0 2500 1.0298 {'accuracy': 0.891}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for sindhu2003/distilbert-base-uncased-lora-text-classification

Adapter
(242)
this model