|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- seeklhy/OmniSQL-14B |
|
--- |
|
# GradeSQL-14B — Outcome Reward Model for Text-to-SQL |
|
|
|
## Model Description |
|
|
|
**GradeSQL-14B** is an Outcome Reward Model (ORM) designed to evaluate the semantic correctness of SQL queries generated from natural language questions in Text-to-SQL tasks. Rather than relying on syntactic heuristics or majority votes, GradeSQL-14B assigns a confidence score indicating whether a candidate SQL query faithfully answers the user's question based on the database schema. |
|
|
|
Built on top of the **OmniSQL-14B** base model and finetuned on the **SPIDER** dataset, GradeSQL-14B provides a robust semantic scoring mechanism to improve query selection and alignment with user intent. |
|
|
|
## Intended Use |
|
|
|
- **Reranking Candidate SQL Queries:** Use GradeSQL-14B to assign semantic correctness scores and select the best SQL query among multiple candidates generated by LLMs. |
|
- **Enhancing Text-to-SQL Pipelines:** Integrate as a reward or reranking model to improve execution accuracy and semantic fidelity in Text-to-SQL systems. |
|
- **Evaluation and Research:** Analyze the semantic alignment of SQL queries with natural language questions to identify and mitigate errors. |
|
|
|
## Finetuning Configuration |
|
|
|
The following **LoRA configuration** was used to train this model: |
|
|
|
- **R**: `16` (rank of the low-rank matrices) |
|
- **Lora Alpha**: `64` (scaling factor for the low-rank update) |
|
- **Target Modules**: `{q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}` |
|
- **Lora Dropout**: `0.05` |
|
- **Bias**: `"none"` (bias terms are frozen) |
|
- **FP16**: `True` (half-precision training) |
|
- **Learning Rate**: `7e-5` |
|
- **Train Batch Size**: `5` |
|
- **Num. Train Epochs**: `50` |
|
|
|
## Usage Example |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
|
|
|
|
prompt = """Question: What is the total horses record for each farm, sorted ascending? |
|
CREATE TABLE competition_record ( |
|
Competition_ID number, -- example: [1, 2] |
|
Farm_ID number, -- example: [2, 3] |
|
Rank number, -- example: [1, 2] |
|
PRIMARY KEY (Competition_ID), |
|
CONSTRAINT fk_competition_record_competition_id FOREIGN KEY (Competition_ID) REFERENCES farm_competition (Competition_ID), |
|
CONSTRAINT fk_competition_record_farm_id FOREIGN KEY (Farm_ID) REFERENCES farm (Farm_ID) |
|
); |
|
|
|
CREATE TABLE city ( |
|
City_ID number, -- example: [1, 2] |
|
Status text, -- example: ['Town', 'Village'] |
|
PRIMARY KEY (City_ID) |
|
); |
|
|
|
CREATE TABLE farm_competition ( |
|
Competition_ID number, -- example: [1, 2] |
|
Host_city_ID number, -- example: [1, 2] |
|
PRIMARY KEY (Competition_ID), |
|
CONSTRAINT fk_farm_competition_host_city_id FOREIGN KEY (Host_city_ID) REFERENCES city (City_ID) |
|
); |
|
|
|
CREATE TABLE farm ( |
|
Farm_ID number, -- example: [1, 2] |
|
Total_Horses number, -- example: [5056.5, 5486.9] |
|
Total_Cattle number, -- example: [8374.5, 8604.8] |
|
PRIMARY KEY (Farm_ID) |
|
); |
|
What is the total horses record for each farm, sorted ascending? |
|
SQL: SELECT SUM(Total_Horses) AS Total_Horses, Farm_ID |
|
FROM farm |
|
GROUP BY Farm_ID |
|
ORDER BY SUM(Total_Horses) ASC; |
|
Is the SQL correct?""" |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained("seeklhy/OmniSQL-14B", torch_dtype="auto", device_map="auto") |
|
peft_model = PeftModel.from_pretrained(base_model, "sisinflab-ai/GradeSQL-14B-ORM-Spider") |
|
orm_model = peft_model.merge_and_unload() |
|
orm_tokenizer = AutoTokenizer.from_pretrained("seeklhy/OmniSQL-14B", use_fast=True) |
|
|
|
del base_model |
|
del peft_model |
|
|
|
inputs = orm_tokenizer(prompt, return_tensors="pt").to(orm_model.device) |
|
|
|
with torch.no_grad(): |
|
outputs = orm_model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_scores=True, use_cache=False) |
|
|
|
generated_ids = outputs.sequences[0, len(inputs.input_ids[0]):] |
|
yes_token_id = orm_tokenizer.convert_tokens_to_ids("ĠYes") |
|
no_token_id = orm_tokenizer.convert_tokens_to_ids("ĠNo") |
|
|
|
yes_no_pos = None |
|
for i, token_id in enumerate(generated_ids): |
|
if token_id in [yes_token_id, no_token_id]: |
|
yes_no_pos = i |
|
break |
|
|
|
if yes_no_pos is None: |
|
print("[Warning]: No 'Yes' or 'No' token found in the generated output.") |
|
print("[Score]: 0.5") |
|
|
|
logits = outputs.scores[yes_no_pos] |
|
probs = torch.softmax(logits, dim=-1) |
|
yes_prob = probs[0, yes_token_id].item() |
|
generated_answer = "Yes" if generated_ids[yes_no_pos] == yes_token_id else "No" |
|
|
|
if generated_answer == "Yes": |
|
print("[Score]: ", yes_prob) |
|
elif generated_answer == "No": |
|
print("[Score]: ", 0) |
|
``` |
|
|
|
If you use **GradeSQL** in your research, please cite the following paper: |
|
|
|
```bibtex |
|
@misc{gradesqloutcomerewardmodels2025, |
|
title={GradeSQL: Outcome Reward Models for Ranking SQL Queries from Large Language Models}, |
|
author={Mattia Tritto and Giuseppe Farano and Dario Di Palma and Gaetano Rossiello and Fedelucio Narducci and Dharmashankar Subramanian and Tommaso Di Noia}, |
|
year={2025}, |
|
eprint={2509.01308}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI}, |
|
url={https://arxiv.org/abs/2509.01308}, |
|
} |
|
``` |