whisper-ft-large-1000-f
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.9591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 40
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.6008 | 0.0029 | 2 | 6.9022 |
4.3327 | 0.0057 | 4 | 6.9022 |
4.6788 | 0.0086 | 6 | 6.7334 |
4.1284 | 0.0114 | 8 | 5.6978 |
2.5702 | 0.0143 | 10 | 4.6321 |
1.5963 | 0.0171 | 12 | 4.3133 |
1.3669 | 0.02 | 14 | 4.2577 |
1.1867 | 0.0229 | 16 | 4.3040 |
1.7891 | 0.0257 | 18 | 4.3839 |
1.14 | 0.0286 | 20 | 5.0947 |
0.7743 | 0.0314 | 22 | 4.4104 |
0.965 | 0.0343 | 24 | 4.0427 |
0.8264 | 0.0371 | 26 | 3.9472 |
0.7508 | 0.04 | 28 | 3.9840 |
0.4857 | 0.0429 | 30 | 4.0175 |
0.609 | 0.0457 | 32 | 4.2039 |
1.2697 | 0.0486 | 34 | 4.1989 |
0.6072 | 0.0514 | 36 | 4.0805 |
0.6064 | 0.0543 | 38 | 3.9941 |
0.7662 | 0.0571 | 40 | 3.9591 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for snaoi-csl/whisper-ft-large-1000-f
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo