CrossEncoder based on cross-encoder/nli-deberta-v3-base
This is a Cross Encoder model finetuned from cross-encoder/nli-deberta-v3-base on the horeca-nli dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text pair classification.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/nli-deberta-v3-base
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 3 labels
- Training Dataset:
🧾 Input / Output
This a model for Natural Language Inference NLI. it take a premises and an hypothesis as input, and return a classification of the relationship between the two input sentence Possible outputs are: contradiction, entailment, neutral
Example:
premises:
kitchen eighty centimeters wide, deep 70 cm placed on closed compartmenthypothesis:
the kitchen is placed on open shelfOutput:
contradiction
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("software-si/kitchen-nli")
# Get scores for pairs of texts
pairs = [
['cooking unit with square plates on compartment with doors', 'the depth of the kitchen is 70 centimeters'],
['cooking unit with 2 electric plates, on compartment with doors', 'the kitchen is placed on top'],
['kitchen module in top version deep 70 cm eighty centimeters wide,', 'the kitchen is placed on cabinet'],
['cooking unit wide 80 cm, with a depth of 90 centimeters, placed on closed compartment', 'the kitchen has a width of 40 cm'],
['kitchen with gas cooking, with gas oven, one hundred twenty centimeters wide,', 'the layout of the kitchen is top'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5, 3)
label_mapping = ['contradiction', 'entailment', 'neutral']
Training Details
Training Dataset
horeca-nli
- Dataset: horeca-nli at a6bd6a4
- Size: 102,836 training samples
- Columns:
premises,hypothesis, andlabels - Approximate statistics based on the first 1000 samples:
premises hypothesis labels type string string int details - min: 26 characters
- mean: 64.84 characters
- max: 112 characters
- min: 23 characters
- mean: 36.55 characters
- max: 60 characters
- 0: ~33.30%
- 1: ~23.70%
- 2: ~43.00%
- Samples:
premises hypothesis labels kitchen eighty centimeters wide, deep 70 cm placed on closed compartmentthe kitchen is forty centimeters wide0cooking unit placed on cabinet deep 90 cm, gas supply,the kitchen is placed on open shelf2cooking unit wide 40 cm, powered by electricity with the square platesthe kitchen measures one hundred twenty centimeters in width0 - Loss:
CrossEntropyLoss
Evaluation Dataset
horeca-nli
- Dataset: horeca-nli at a6bd6a4
- Size: 30,851 evaluation samples
- Columns:
premises,hypothesis, andlabels - Approximate statistics based on the first 1000 samples:
premises hypothesis labels type string string int details - min: 21 characters
- mean: 65.62 characters
- max: 114 characters
- min: 23 characters
- mean: 36.56 characters
- max: 60 characters
- 0: ~35.20%
- 1: ~23.20%
- 2: ~41.60%
- Samples:
premises hypothesis labels cooking unit with square plates on compartment with doorsthe depth of the kitchen is 70 centimeters2cooking unit with 2 electric plates, on compartment with doorsthe kitchen is placed on top2kitchen module in top version deep 70 cm eighty centimeters wide,the kitchen is placed on cabinet0 - Loss:
CrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 1e-05num_train_epochs: 1warmup_steps: 10283bf16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 10283log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.3111 | 500 | 0.0082 | 0.0072 |
| 0.6223 | 1000 | 0.0043 | 0.0027 |
| 0.9334 | 1500 | 0.0041 | 0.0388 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 12
Model tree for software-si/kitchen-nli
Base model
microsoft/deberta-v3-base