CrossEncoder based on cross-encoder/nli-deberta-v3-base

This is a Cross Encoder model finetuned from cross-encoder/nli-deberta-v3-base on the horeca-nli dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text pair classification.

Model Details

Model Description

🧾 Input / Output

This a model for Natural Language Inference NLI. it take a premises and an hypothesis as input, and return a classification of the relationship between the two input sentence Possible outputs are: contradiction, entailment, neutral

Example:

  • premises:
    kitchen eighty centimeters wide, deep 70 cm placed on closed compartment

  • hypothesis:
    the kitchen is placed on open shelf

  • Output:
    contradiction


Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder


# Download from the 🤗 Hub
model = CrossEncoder("software-si/kitchen-nli")
# Get scores for pairs of texts
pairs = [
    ['cooking unit with square plates on compartment with doors', 'the depth of the kitchen is 70 centimeters'],
    ['cooking unit with 2 electric plates, on compartment with doors', 'the kitchen is placed on top'],
    ['kitchen module in top version deep 70 cm eighty centimeters wide,', 'the kitchen is placed on cabinet'],
    ['cooking unit wide 80 cm, with a depth of 90 centimeters, placed on closed compartment', 'the kitchen has a width of 40 cm'],
    ['kitchen with gas cooking, with gas oven, one hundred twenty centimeters wide,', 'the layout of the kitchen is top'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5, 3)
label_mapping = ['contradiction', 'entailment', 'neutral']

Training Details

Training Dataset

horeca-nli

  • Dataset: horeca-nli at a6bd6a4
  • Size: 102,836 training samples
  • Columns: premises, hypothesis, and labels
  • Approximate statistics based on the first 1000 samples:
    premises hypothesis labels
    type string string int
    details
    • min: 26 characters
    • mean: 64.84 characters
    • max: 112 characters
    • min: 23 characters
    • mean: 36.55 characters
    • max: 60 characters
    • 0: ~33.30%
    • 1: ~23.70%
    • 2: ~43.00%
  • Samples:
    premises hypothesis labels
    kitchen eighty centimeters wide, deep 70 cm placed on closed compartment the kitchen is forty centimeters wide 0
    cooking unit placed on cabinet deep 90 cm, gas supply, the kitchen is placed on open shelf 2
    cooking unit wide 40 cm, powered by electricity with the square plates the kitchen measures one hundred twenty centimeters in width 0
  • Loss: CrossEntropyLoss

Evaluation Dataset

horeca-nli

  • Dataset: horeca-nli at a6bd6a4
  • Size: 30,851 evaluation samples
  • Columns: premises, hypothesis, and labels
  • Approximate statistics based on the first 1000 samples:
    premises hypothesis labels
    type string string int
    details
    • min: 21 characters
    • mean: 65.62 characters
    • max: 114 characters
    • min: 23 characters
    • mean: 36.56 characters
    • max: 60 characters
    • 0: ~35.20%
    • 1: ~23.20%
    • 2: ~41.60%
  • Samples:
    premises hypothesis labels
    cooking unit with square plates on compartment with doors the depth of the kitchen is 70 centimeters 2
    cooking unit with 2 electric plates, on compartment with doors the kitchen is placed on top 2
    kitchen module in top version deep 70 cm eighty centimeters wide, the kitchen is placed on cabinet 0
  • Loss: CrossEntropyLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 1e-05
  • num_train_epochs: 1
  • warmup_steps: 10283
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 10283
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss
0.3111 500 0.0082 0.0072
0.6223 1000 0.0043 0.0027
0.9334 1500 0.0041 0.0388
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.1
  • Transformers: 4.56.2
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.10.1
  • Datasets: 4.1.1
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
12
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for software-si/kitchen-nli

Finetuned
(3)
this model

Dataset used to train software-si/kitchen-nli