splade-cocondenser-ensembledistil trained on
This is a SPLADE Sparse Encoder model finetuned from naver/splade-cocondenser-ensembledistil on the stsb dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: naver/splade-cocondenser-ensembledistil
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-cocondenser-ensembledistil-sts")
# Run inference
sentences = [
    'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
    'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
    'A man plays the guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets: sts-devandsts-test
- Evaluated with SparseEmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test | 
|---|---|---|
| pearson_cosine | 0.876 | 0.8408 | 
| spearman_cosine | 0.8704 | 0.8292 | 
| active_dims | 49.3057 | 47.0707 | 
| sparsity_ratio | 0.9984 | 0.9985 | 
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.0 tokens
- max: 28 tokens
 - min: 5 tokens
- mean: 9.95 tokens
- max: 25 tokens
 - min: 0.0
- mean: 0.45
- max: 1.0
 
- Samples:sentence1 sentence2 score A plane is taking off.An air plane is taking off.1.0A man is playing a large flute.A man is playing a flute.0.76A man is spreading shreded cheese on a pizza.A man is spreading shredded cheese on an uncooked pizza.0.76
- Loss: SpladeLosswith these parameters:{ "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')", "lambda_corpus": 0.003 }
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.1 tokens
- max: 45 tokens
 - min: 6 tokens
- mean: 15.11 tokens
- max: 53 tokens
 - min: 0.0
- mean: 0.42
- max: 1.0
 
- Samples:sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0
- Loss: SpladeLosswith these parameters:{ "loss": "SparseCosineSimilarityLoss(loss_fct='torch.nn.modules.loss.MSELoss')", "lambda_corpus": 0.003 }
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- learning_rate: 4e-06
- num_train_epochs: 1
- bf16: True
- batch_sampler: no_duplicates
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 16
- per_device_eval_batch_size: 16
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- torch_empty_cache_steps: None
- learning_rate: 4e-06
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.0
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: True
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- tp_size: 0
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: None
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- include_for_metrics: []
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- eval_on_start: False
- use_liger_kernel: False
- eval_use_gather_object: False
- average_tokens_across_devices: False
- prompts: None
- batch_sampler: no_duplicates
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | 
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.8366 | - | 
| 0.2778 | 100 | 0.0298 | 0.0267 | 0.8631 | - | 
| 0.5556 | 200 | 0.0306 | 0.0264 | 0.8686 | - | 
| 0.8333 | 300 | 0.0289 | 0.0257 | 0.8704 | - | 
| -1 | -1 | - | - | - | 0.8292 | 
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.002 kWh
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.016 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
- CPU Model: AMD Ryzen 9 6900HX with Radeon Graphics
- RAM Size: 30.61 GB
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
FlopsLoss
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
- Downloads last month
- 3
Model tree for sparse-encoder/example-splade-cocondenser-ensembledistil-sts
Base model
naver/splade-cocondenser-ensembledistilDataset used to train sparse-encoder/example-splade-cocondenser-ensembledistil-sts
Evaluation results
- Pearson Cosine on sts devself-reported0.876
- Spearman Cosine on sts devself-reported0.870
- Active Dims on sts devself-reported49.306
- Sparsity Ratio on sts devself-reported0.998
- Pearson Cosine on sts testself-reported0.841
- Spearman Cosine on sts testself-reported0.829
- Active Dims on sts testself-reported47.071
- Sparsity Ratio on sts testself-reported0.998
