soccer-qa-4b / src /datasets /video_dataset.py
VarunKodathala's picture
Upload folder using huggingface_hub
0e37bb2 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import pathlib
import warnings
from logging import getLogger
import numpy as np
import pandas as pd
import torch
import torchvision
from decord import VideoReader, cpu
from src.datasets.utils.dataloader import ConcatIndices, MonitoredDataset, NondeterministicDataLoader
from src.datasets.utils.weighted_sampler import DistributedWeightedSampler
_GLOBAL_SEED = 0
logger = getLogger()
def make_videodataset(
data_paths,
batch_size,
frames_per_clip=8,
dataset_fpcs=None,
frame_step=4,
duration=None,
fps=None,
num_clips=1,
random_clip_sampling=True,
allow_clip_overlap=False,
filter_short_videos=False,
filter_long_videos=int(10**9),
transform=None,
shared_transform=None,
rank=0,
world_size=1,
datasets_weights=None,
collator=None,
drop_last=True,
num_workers=10,
pin_mem=True,
persistent_workers=True,
deterministic=True,
log_dir=None,
):
dataset = VideoDataset(
data_paths=data_paths,
datasets_weights=datasets_weights,
frames_per_clip=frames_per_clip,
dataset_fpcs=dataset_fpcs,
duration=duration,
fps=fps,
frame_step=frame_step,
num_clips=num_clips,
random_clip_sampling=random_clip_sampling,
allow_clip_overlap=allow_clip_overlap,
filter_short_videos=filter_short_videos,
filter_long_videos=filter_long_videos,
shared_transform=shared_transform,
transform=transform,
)
log_dir = pathlib.Path(log_dir) if log_dir else None
if log_dir:
log_dir.mkdir(parents=True, exist_ok=True)
# Worker ID will replace '%w'
resource_log_filename = log_dir / f"resource_file_{rank}_%w.csv"
dataset = MonitoredDataset(
dataset=dataset,
log_filename=str(resource_log_filename),
log_interval=10.0,
monitor_interval=5.0,
)
logger.info("VideoDataset dataset created")
if datasets_weights is not None:
dist_sampler = DistributedWeightedSampler(dataset, num_replicas=world_size, rank=rank, shuffle=True)
else:
dist_sampler = torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=world_size, rank=rank, shuffle=True
)
if deterministic:
data_loader = torch.utils.data.DataLoader(
dataset,
collate_fn=collator,
sampler=dist_sampler,
batch_size=batch_size,
drop_last=drop_last,
pin_memory=pin_mem,
num_workers=num_workers,
persistent_workers=(num_workers > 0) and persistent_workers,
)
else:
data_loader = NondeterministicDataLoader(
dataset,
collate_fn=collator,
sampler=dist_sampler,
batch_size=batch_size,
drop_last=drop_last,
pin_memory=pin_mem,
num_workers=num_workers,
persistent_workers=(num_workers > 0) and persistent_workers,
)
logger.info("VideoDataset unsupervised data loader created")
return dataset, data_loader, dist_sampler
class VideoDataset(torch.utils.data.Dataset):
"""Video classification dataset."""
def __init__(
self,
data_paths,
datasets_weights=None,
frames_per_clip=16,
fps=None,
dataset_fpcs=None,
frame_step=4,
num_clips=1,
transform=None,
shared_transform=None,
random_clip_sampling=True,
allow_clip_overlap=False,
filter_short_videos=False,
filter_long_videos=int(10**9),
duration=None, # duration in seconds
):
self.data_paths = data_paths
self.datasets_weights = datasets_weights
self.frame_step = frame_step
self.num_clips = num_clips
self.transform = transform
self.shared_transform = shared_transform
self.random_clip_sampling = random_clip_sampling
self.allow_clip_overlap = allow_clip_overlap
self.filter_short_videos = filter_short_videos
self.filter_long_videos = filter_long_videos
self.duration = duration
self.fps = fps
if sum([v is not None for v in (fps, duration, frame_step)]) != 1:
raise ValueError(f"Must specify exactly one of either {fps=}, {duration=}, or {frame_step=}.")
if isinstance(data_paths, str):
data_paths = [data_paths]
if dataset_fpcs is None:
self.dataset_fpcs = [frames_per_clip for _ in data_paths]
else:
if len(dataset_fpcs) != len(data_paths):
raise ValueError("Frames per clip not properly specified for NFS data paths")
self.dataset_fpcs = dataset_fpcs
if VideoReader is None:
raise ImportError('Unable to import "decord" which is required to read videos.')
# Load video paths and labels
samples, labels = [], []
self.num_samples_per_dataset = []
for data_path in self.data_paths:
if data_path[-4:] == ".csv":
try:
data = pd.read_csv(data_path, header=None, delimiter=" ")
except pd.errors.ParserError:
# In image captioning datasets where we have space, we use :: as delimiter.
data = pd.read_csv(data_path, header=None, delimiter="::")
samples += list(data.values[:, 0])
labels += list(data.values[:, 1])
num_samples = len(data)
self.num_samples_per_dataset.append(num_samples)
elif data_path[-4:] == ".npy":
data = np.load(data_path, allow_pickle=True)
data = list(map(lambda x: repr(x)[1:-1], data))
samples += data
labels += [0] * len(data)
num_samples = len(data)
self.num_samples_per_dataset.append(len(data))
self.per_dataset_indices = ConcatIndices(self.num_samples_per_dataset)
# [Optional] Weights for each sample to be used by downstream
# weighted video sampler
self.sample_weights = None
if self.datasets_weights is not None:
self.sample_weights = []
for dw, ns in zip(self.datasets_weights, self.num_samples_per_dataset):
self.sample_weights += [dw / ns] * ns
self.samples = samples
self.labels = labels
def __getitem__(self, index):
sample = self.samples[index]
loaded_sample = False
# Keep trying to load videos until you find a valid sample
while not loaded_sample:
if not isinstance(sample, str):
logger.warning("Invalid sample.")
else:
if sample.split(".")[-1].lower() in ("jpg", "png", "jpeg"):
loaded_sample = self.get_item_image(index)
else:
loaded_sample = self.get_item_video(index)
if not loaded_sample:
index = np.random.randint(self.__len__())
sample = self.samples[index]
return loaded_sample
def get_item_video(self, index):
sample = self.samples[index]
dataset_idx, _ = self.per_dataset_indices[index]
frames_per_clip = self.dataset_fpcs[dataset_idx]
buffer, clip_indices = self.loadvideo_decord(sample, frames_per_clip) # [T H W 3]
loaded_video = len(buffer) > 0
if not loaded_video:
return
# Label/annotations for video
label = self.labels[index]
def split_into_clips(video):
"""Split video into a list of clips"""
fpc = frames_per_clip
nc = self.num_clips
return [video[i * fpc : (i + 1) * fpc] for i in range(nc)]
# Parse video into frames & apply data augmentations
if self.shared_transform is not None:
buffer = self.shared_transform(buffer)
buffer = split_into_clips(buffer)
if self.transform is not None:
buffer = [self.transform(clip) for clip in buffer]
return buffer, label, clip_indices
def get_item_image(self, index):
sample = self.samples[index]
dataset_idx, _ = self.per_dataset_indices[index]
fpc = self.dataset_fpcs[dataset_idx]
try:
image_tensor = torchvision.io.read_image(path=sample, mode=torchvision.io.ImageReadMode.RGB)
except Exception:
return
label = self.labels[index]
clip_indices = [np.arange(start=0, stop=fpc, dtype=np.int32)]
# Expanding the input image [3, H, W] ==> [T, 3, H, W]
buffer = image_tensor.unsqueeze(dim=0).repeat((fpc, 1, 1, 1))
buffer = buffer.permute((0, 2, 3, 1)) # [T, 3, H, W] ==> [T H W 3]
if self.shared_transform is not None:
# Technically we can have only transform, doing this just for the sake of consistency with videos.
buffer = self.shared_transform(buffer)
if self.transform is not None:
buffer = [self.transform(buffer)]
return buffer, label, clip_indices
def loadvideo_decord(self, sample, fpc):
"""Load video content using Decord"""
fname = sample
if not os.path.exists(fname):
warnings.warn(f"video path not found {fname=}")
return [], None
_fsize = os.path.getsize(fname)
if _fsize > self.filter_long_videos:
warnings.warn(f"skipping long video of size {_fsize=} (bytes)")
return [], None
try:
vr = VideoReader(fname, num_threads=-1, ctx=cpu(0))
except Exception:
return [], None
fstp = self.frame_step
if self.duration is not None or self.fps is not None:
try:
video_fps = math.ceil(vr.get_avg_fps())
except Exception as e:
logger.warning(e)
if self.duration is not None:
assert self.fps is None
fstp = int(self.duration * video_fps / fpc)
else:
assert self.duration is None
fstp = video_fps // self.fps
assert fstp is not None and fstp > 0
clip_len = int(fpc * fstp)
if self.filter_short_videos and len(vr) < clip_len:
warnings.warn(f"skipping video of length {len(vr)}")
return [], None
vr.seek(0) # Go to start of video before sampling frames
# Partition video into equal sized segments and sample each clip
# from a different segment
partition_len = len(vr) // self.num_clips
all_indices, clip_indices = [], []
for i in range(self.num_clips):
if partition_len > clip_len:
# If partition_len > clip len, then sample a random window of
# clip_len frames within the segment
end_indx = clip_len
if self.random_clip_sampling:
end_indx = np.random.randint(clip_len, partition_len)
start_indx = end_indx - clip_len
indices = np.linspace(start_indx, end_indx, num=fpc)
indices = np.clip(indices, start_indx, end_indx - 1).astype(np.int64)
# --
indices = indices + i * partition_len
else:
# If partition overlap not allowed and partition_len < clip_len
# then repeatedly append the last frame in the segment until
# we reach the desired clip length
if not self.allow_clip_overlap:
indices = np.linspace(0, partition_len, num=partition_len // fstp)
indices = np.concatenate(
(
indices,
np.ones(fpc - partition_len // fstp) * partition_len,
)
)
indices = np.clip(indices, 0, partition_len - 1).astype(np.int64)
# --
indices = indices + i * partition_len
# If partition overlap is allowed and partition_len < clip_len
# then start_indx of segment i+1 will lie within segment i
else:
sample_len = min(clip_len, len(vr)) - 1
indices = np.linspace(0, sample_len, num=sample_len // fstp)
indices = np.concatenate(
(
indices,
np.ones(fpc - sample_len // fstp) * sample_len,
)
)
indices = np.clip(indices, 0, sample_len - 1).astype(np.int64)
# --
clip_step = 0
if len(vr) > clip_len:
clip_step = (len(vr) - clip_len) // (self.num_clips - 1)
indices = indices + i * clip_step
clip_indices.append(indices)
all_indices.extend(list(indices))
buffer = vr.get_batch(all_indices).asnumpy()
return buffer, clip_indices
def __len__(self):
return len(self.samples)