sreyroth's picture
models/whisper-large-v3-cv17-th-ft-with-lr-5e-5
c87fb35 verified
metadata
library_name: peft
language:
  - th
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Thai Finetuned
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: th
          split: None
          args: 'config: th, split: train'
        metrics:
          - type: wer
            value: 37.2840522511834
            name: Wer

Whisper Large v3 Thai Finetuned

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1197
  • Cer: 347.2750
  • Wer: 37.2841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.1468 1.0 2052 0.1265 348.7140 42.3821
0.1225 2.0 4104 0.1178 387.4029 34.6267
0.0914 3.0 6156 0.1157 368.2561 36.4184
0.0779 4.0 8208 0.1182 347.7405 36.8434
0.0624 5.0 10260 0.1197 347.2750 37.2841

Framework versions

  • PEFT 0.14.1.dev0
  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0