File size: 17,117 Bytes
b074e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import os
import json
import inspect
from dataclasses import dataclass, field, asdict
from loguru import logger
from omegaconf import OmegaConf
from tabulate import tabulate
from einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.utils.checkpoint import checkpoint
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from utils.misc import LargeInt
from utils.model_utils import randn_tensor
from utils.compile_utils import smart_compile
@dataclass
class AutoEncoderParams:
resolution: int = 256
in_channels: int = 3
ch: int = 128
out_ch: int = 3
ch_mult: list[int] = field(default_factory=lambda: [1, 2, 4, 4])
num_res_blocks: int = 2
z_channels: int = 16
scaling_factor: float = 0.3611
shift_factor: float = 0.1159
deterministic: bool = False
encoder_norm: bool = False
psz: int | None = None
def swish(x: Tensor) -> Tensor:
return x * torch.sigmoid(x)
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: Tensor):
pad = (0, 1, 0, 1)
x = nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
self.grad_checkpointing = False
@smart_compile()
def forward(self, x: Tensor) -> Tensor:
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
block_fn = self.down[i_level].block[i_block]
if self.grad_checkpointing:
h = checkpoint(block_fn, hs[-1])
else:
h = block_fn(hs[-1])
if len(self.down[i_level].attn) > 0:
attn_fn = self.down[i_level].attn[i_block]
if self.grad_checkpointing:
h = checkpoint(attn_fn, h)
else:
h = attn_fn(h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
self.grad_checkpointing = False
@smart_compile()
def forward(self, z: Tensor) -> Tensor:
# get dtype for proper tracing
upscale_dtype = next(self.up.parameters()).dtype
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# cast to proper dtype
h = h.to(upscale_dtype)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
block_fn = self.up[i_level].block[i_block]
if self.grad_checkpointing:
h = checkpoint(block_fn, h)
else:
h = block_fn(h)
if len(self.up[i_level].attn) > 0:
attn_fn = self.up[i_level].attn[i_block]
if self.grad_checkpointing:
h = checkpoint(attn_fn, h)
else:
h = attn_fn(h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
def layer_norm_2d(input: torch.Tensor, normalized_shape: torch.Size, eps: float = 1e-6) -> torch.Tensor:
# input.shape = (bsz, c, h, w)
_input = input.permute(0, 2, 3, 1)
_input = F.layer_norm(_input, normalized_shape, None, None, eps)
_input = _input.permute(0, 3, 1, 2)
return _input
class AutoencoderKL(nn.Module):
def __init__(self, params: AutoEncoderParams):
super().__init__()
self.config = params
self.config = OmegaConf.create(asdict(self.config))
self.config.latent_channels = params.z_channels
self.config.block_out_channels = params.ch_mult
self.params = params
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.encoder_norm = params.encoder_norm
self.psz = params.psz
self.apply(self._init_weights)
def _init_weights(self, module):
std = 0.02
if isinstance(module, (nn.Conv2d, nn.Linear)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.GroupNorm):
if module.weight is not None:
module.weight.data.fill_(1.0)
if module.bias is not None:
module.bias.data.zero_()
def gradient_checkpointing_enable(self):
self.encoder.grad_checkpointing = True
self.decoder.grad_checkpointing = True
@property
def dtype(self):
return self.encoder.conv_in.weight.dtype
@property
def device(self):
return self.encoder.conv_in.weight.device
@property
def trainable_params(self) -> float:
n_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
return LargeInt(n_params)
@property
def params_info(self) -> str:
encoder_params = str(LargeInt(sum(p.numel() for p in self.encoder.parameters())))
decoder_params = str(LargeInt(sum(p.numel() for p in self.decoder.parameters())))
table = [["encoder", encoder_params], ["decoder", decoder_params]]
return tabulate(table, headers=["Module", "Params"], tablefmt="grid")
def get_last_layer(self):
return self.decoder.conv_out.weight
def patchify(self, img: torch.Tensor):
"""
img: (bsz, C, H, W)
x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size)
"""
bsz, c, h, w = img.shape
p = self.psz
h_, w_ = h // p, w // p
img = img.reshape(bsz, c, h_, p, w_, p)
img = torch.einsum("nchpwq->ncpqhw", img)
x = img.reshape(bsz, c * p**2, h_, w_)
return x
def unpatchify(self, x: torch.Tensor):
"""
x: (bsz, patch_size**2 * C, H / patch_size, W / patch_size)
img: (bsz, C, H, W)
"""
bsz = x.shape[0]
p = self.psz
c = self.config.latent_channels
h_, w_ = x.shape[2], x.shape[3]
x = x.reshape(bsz, c, p, p, h_, w_)
x = torch.einsum("ncpqhw->nchpwq", x)
img = x.reshape(bsz, c, h_ * p, w_ * p)
return img
def encode(self, x: torch.Tensor, return_dict: bool = True):
moments = self.encoder(x)
mean, logvar = torch.chunk(moments, 2, dim=1)
if self.psz is not None:
mean = self.patchify(mean)
if self.encoder_norm:
mean = layer_norm_2d(mean, mean.size()[-1:])
if self.psz is not None:
mean = self.unpatchify(mean)
moments = torch.cat([mean, logvar], dim=1).contiguous()
posterior = DiagonalGaussianDistribution(moments, deterministic=self.params.deterministic)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def decode(self, z: torch.Tensor, return_dict: bool = True):
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(self, input, sample_posterior=True, noise_strength=0.0):
posterior = self.encode(input).latent_dist
z = posterior.sample() if sample_posterior else posterior.mode()
if noise_strength > 0.0:
p = torch.distributions.Uniform(0, noise_strength)
z = z + p.sample((z.shape[0],)).reshape(-1, 1, 1, 1).to(z.device) * randn_tensor(
z.shape, device=z.device, dtype=z.dtype
)
dec = self.decode(z).sample
return dec, posterior
@classmethod
def from_pretrained(cls, model_path, **kwargs):
config_path = os.path.join(model_path, "config.json")
ckpt_path = os.path.join(model_path, "checkpoint.pt")
if not os.path.isdir(model_path) or not os.path.isfile(config_path) or not os.path.isfile(ckpt_path):
raise ValueError(
f"Invalid model path: {model_path}. The path should contain both config.json and checkpoint.pt files."
)
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
with open(config_path, "r") as f:
config: dict = json.load(f)
config.update(kwargs)
kwargs = config
# Filter out kwargs that are not in AutoEncoderParams
# This ensures we only pass parameters that the model can accept
valid_kwargs = {}
param_signature = inspect.signature(AutoEncoderParams.__init__).parameters
for key, value in kwargs.items():
if key in param_signature:
valid_kwargs[key] = value
else:
logger.info(f"Ignoring parameter '{key}' as it's not defined in AutoEncoderParams")
params = AutoEncoderParams(**valid_kwargs)
model = cls(params)
try:
msg = model.load_state_dict(state_dict, strict=False)
logger.info(f"Loaded state_dict from {ckpt_path}")
logger.info(f"Missing keys:\n{msg.missing_keys}")
logger.info(f"Unexpected keys:\n{msg.unexpected_keys}")
except Exception as e:
logger.error(e)
logger.warning(f"Failed to load state_dict from {ckpt_path}, using random initialization")
return model |