stockmark/stockmark-100b-instruct-v0.1

Stockmark-100b-instruct-v0.1 is an instruction tuned version of stockmark-100b, a 100 billion parameter LLM developed by Stockmark Inc.

How to use

import torch
from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM

prompt_template = """### ๆŒ‡็คบ:
{instruction}

### ๅฟœ็ญ”:
"""

tokenizer = AutoTokenizer.from_pretrained("stockmark/stockmark-100b-instruct-v0.1")
model = AutoPeftModelForCausalLM.from_pretrained("stockmark/stockmark-100b-instruct-v0.1", device_map="auto", torch_dtype=torch.bfloat16)

instruction = "็”ŸๆˆAIใจใฏ๏ผŸ"
prompt = prompt_template.format(instruction=instruction)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
with torch.inference_mode():
    tokens = model.generate(
        input_ids,
        max_new_tokens = 256,
        do_sample = True,
        temperature = 0.7,
        top_p = 0.95,
        repetition_penalty = 1.08
    )
    
output = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(output)

Dataset (fine-tuning)

Performance

Stockmark Business Questions

Dataset: https://huggingface.co/datasets/stockmark/business-questions

model accuracy
stockmark-100b-instruct 0.90
stockmark-13b-instruct 0.80
GPT-3.5-turbo^1 0.42

Japanese Vicuna QA Benchmark

We excluded categories that require calculation and coding, and use remaining 60 questions for evaluation.

GitHub: https://github.com/ku-nlp/ja-vicuna-qa-benchmark

model average score
stockmark-100b-instruct 5.97
tokyotech-llm/Swallow-70b-instruct-hf 5.59
GPT-3.5 (text-davinci-003) 5.08

Inference speed

model time [s] for genrating 100 characters in Japanese
stockmark-100b-instruct 1.86
gpt-3.5-turbo 2.15
gpt-4-turbo 5.48
tokyotech-llm/Swallow-70b-instruct-hf 2.22

For local LLMs, we measured the inference time using AWS Inferentia2.

License

MIT

Developed by

Stockmark Inc.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Space using stockmark/stockmark-100b-instruct-v0.1 1